Enter a problem...
Calculus Examples
∫x2arcsin(x)dx
Step 1
Integrate by parts using the formula ∫udv=uv-∫vdu, where u=arcsin(x) and dv=x2.
arcsin(x)(13x3)-∫13x31√1-x2dx
Step 2
Step 2.1
Combine 13 and x3.
arcsin(x)x33-∫13x31√1-x2dx
Step 2.2
Combine arcsin(x) and x33.
arcsin(x)x33-∫13x31√1-x2dx
arcsin(x)x33-∫13x31√1-x2dx
Step 3
Since 13 is constant with respect to x, move 13 out of the integral.
arcsin(x)x33-(13∫x31√1-x2dx)
Step 4
Combine x3 and 1√1-x2.
arcsin(x)x33-13∫x3√1-x2dx
Step 5
Let x=sin(t), where -π2≤t≤π2. Then dx=cos(t)dt. Note that since -π2≤t≤π2, cos(t) is positive.
arcsin(x)x33-13∫sin3(t)√1-sin2(t)cos(t)dt
Step 6
Step 6.1
Simplify √1-sin2(t).
Step 6.1.1
Apply pythagorean identity.
arcsin(x)x33-13∫sin3(t)√cos2(t)cos(t)dt
Step 6.1.2
Pull terms out from under the radical, assuming positive real numbers.
arcsin(x)x33-13∫sin3(t)cos(t)cos(t)dt
arcsin(x)x33-13∫sin3(t)cos(t)cos(t)dt
Step 6.2
Cancel the common factor of cos(t).
Step 6.2.1
Cancel the common factor.
arcsin(x)x33-13∫sin3(t)cos(t)cos(t)dt
Step 6.2.2
Rewrite the expression.
arcsin(x)x33-13∫sin3(t)dt
arcsin(x)x33-13∫sin3(t)dt
arcsin(x)x33-13∫sin3(t)dt
Step 7
Factor out sin2(t).
arcsin(x)x33-13∫sin2(t)sin(t)dt
Step 8
Using the Pythagorean Identity, rewrite sin2(t) as 1-cos2(t).
arcsin(x)x33-13∫(1-cos2(t))sin(t)dt
Step 9
Step 9.1
Let u=cos(t). Find dudt.
Step 9.1.1
Differentiate cos(t).
ddt[cos(t)]
Step 9.1.2
The derivative of cos(t) with respect to t is -sin(t).
-sin(t)
-sin(t)
Step 9.2
Rewrite the problem using u and du.
arcsin(x)x33-13∫-1+u2du
arcsin(x)x33-13∫-1+u2du
Step 10
Split the single integral into multiple integrals.
arcsin(x)x33-13(∫-1du+∫u2du)
Step 11
Apply the constant rule.
arcsin(x)x33-13(-u+C+∫u2du)
Step 12
By the Power Rule, the integral of u2 with respect to u is 13u3.
arcsin(x)x33-13(-u+C+13u3+C)
Step 13
Step 13.1
Simplify.
13arcsin(x)x3-13(-u+13u3)+C
Step 13.2
Simplify.
Step 13.2.1
Combine 13 and arcsin(x).
arcsin(x)3x3-13(-u+13u3)+C
Step 13.2.2
Combine arcsin(x)3 and x3.
arcsin(x)x33-13(-u+13u3)+C
Step 13.2.3
To write -13(-u+13u3) as a fraction with a common denominator, multiply by 33.
arcsin(x)x33-13(-u+13u3)⋅33+C
Step 13.2.4
Combine -13(-u+13u3) and 33.
arcsin(x)x33+-13(-u+13u3)⋅33+C
Step 13.2.5
Combine the numerators over the common denominator.
arcsin(x)x3-13(-u+13u3)⋅33+C
Step 13.2.6
Combine 13 and u3.
arcsin(x)x3-13(-u+u33)⋅33+C
Step 13.2.7
Multiply 3 by -1.
arcsin(x)x3-3(13)(-u+u33)3+C
Step 13.2.8
Combine -3 and 13.
arcsin(x)x3+-33(-u+u33)3+C
Step 13.2.9
Cancel the common factor of -3 and 3.
Step 13.2.9.1
Factor 3 out of -3.
arcsin(x)x3+3⋅-13(-u+u33)3+C
Step 13.2.9.2
Cancel the common factors.
Step 13.2.9.2.1
Factor 3 out of 3.
arcsin(x)x3+3⋅-13(1)(-u+u33)3+C
Step 13.2.9.2.2
Cancel the common factor.
arcsin(x)x3+3⋅-13⋅1(-u+u33)3+C
Step 13.2.9.2.3
Rewrite the expression.
arcsin(x)x3+-11(-u+u33)3+C
Step 13.2.9.2.4
Divide -1 by 1.
arcsin(x)x3-(-u+u33)3+C
arcsin(x)x3-(-u+u33)3+C
arcsin(x)x3-(-u+u33)3+C
arcsin(x)x3-(-u+u33)3+C
arcsin(x)x3-(-u+u33)3+C
Step 14
Step 14.1
Replace all occurrences of u with cos(t).
arcsin(x)x3-(-cos(t)+cos3(t)3)3+C
Step 14.2
Replace all occurrences of t with arcsin(x).
arcsin(x)x3-(-cos(arcsin(x))+cos3(arcsin(x))3)3+C
arcsin(x)x3-(-cos(arcsin(x))+cos3(arcsin(x))3)3+C
Step 15
Step 15.1
Simplify each term.
Step 15.1.1
Draw a triangle in the plane with vertices (√12-x2,x), (√12-x2,0), and the origin. Then arcsin(x) is the angle between the positive x-axis and the ray beginning at the origin and passing through (√12-x2,x). Therefore, cos(arcsin(x)) is √1-x2.
arcsin(x)x3-(-√1-x2+cos3(arcsin(x))3)3+C
Step 15.1.2
Rewrite 1 as 12.
arcsin(x)x3-(-√12-x2+cos3(arcsin(x))3)3+C
Step 15.1.3
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=1 and b=x.
arcsin(x)x3-(-√(1+x)(1-x)+cos3(arcsin(x))3)3+C
arcsin(x)x3-(-√(1+x)(1-x)+cos3(arcsin(x))3)3+C
Step 15.2
Apply the distributive property.
arcsin(x)x3--√(1+x)(1-x)-cos3(arcsin(x))33+C
Step 15.3
Multiply --√(1+x)(1-x).
Step 15.3.1
Multiply -1 by -1.
arcsin(x)x3+1√(1+x)(1-x)-cos3(arcsin(x))33+C
Step 15.3.2
Multiply √(1+x)(1-x) by 1.
arcsin(x)x3+√(1+x)(1-x)-cos3(arcsin(x))33+C
arcsin(x)x3+√(1+x)(1-x)-cos3(arcsin(x))33+C
Step 15.4
Simplify the numerator.
Step 15.4.1
Draw a triangle in the plane with vertices (√12-x2,x), (√12-x2,0), and the origin. Then arcsin(x) is the angle between the positive x-axis and the ray beginning at the origin and passing through (√12-x2,x). Therefore, cos(arcsin(x)) is √1-x2.
arcsin(x)x3+√(1+x)(1-x)-√1-x2333+C
Step 15.4.2
Rewrite 1 as 12.
arcsin(x)x3+√(1+x)(1-x)-√12-x2333+C
Step 15.4.3
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=1 and b=x.
arcsin(x)x3+√(1+x)(1-x)-√(1+x)(1-x)333+C
Step 15.4.4
Rewrite √(1+x)(1-x)3 as √((1+x)(1-x))3.
arcsin(x)x3+√(1+x)(1-x)-√((1+x)(1-x))333+C
Step 15.4.5
Apply the product rule to (1+x)(1-x).
arcsin(x)x3+√(1+x)(1-x)-√(1+x)3(1-x)333+C
Step 15.4.6
Rewrite (1+x)3(1-x)3 as ((1+x)(1-x))2((1+x)(1-x)).
Step 15.4.6.1
Factor out (1+x)2.
arcsin(x)x3+√(1+x)(1-x)-√(1+x)2(1+x)(1-x)333+C
Step 15.4.6.2
Factor out (1-x)2.
arcsin(x)x3+√(1+x)(1-x)-√(1+x)2(1+x)((1-x)2(1-x))33+C
Step 15.4.6.3
Move 1+x.
arcsin(x)x3+√(1+x)(1-x)-√(1+x)2(1-x)2(1+x)(1-x)33+C
Step 15.4.6.4
Rewrite (1+x)2(1-x)2 as ((1+x)(1-x))2.
arcsin(x)x3+√(1+x)(1-x)-√((1+x)(1-x))2(1+x)(1-x)33+C
Step 15.4.6.5
Add parentheses.
arcsin(x)x3+√(1+x)(1-x)-√((1+x)(1-x))2((1+x)(1-x))33+C
arcsin(x)x3+√(1+x)(1-x)-√((1+x)(1-x))2((1+x)(1-x))33+C
Step 15.4.7
Pull terms out from under the radical.
arcsin(x)x3+√(1+x)(1-x)-(1+x)(1-x)√(1+x)(1-x)33+C
Step 15.4.8
Expand (1+x)(1-x) using the FOIL Method.
Step 15.4.8.1
Apply the distributive property.
arcsin(x)x3+√(1+x)(1-x)-(1(1-x)+x(1-x))√(1+x)(1-x)33+C
Step 15.4.8.2
Apply the distributive property.
arcsin(x)x3+√(1+x)(1-x)-(1⋅1+1(-x)+x(1-x))√(1+x)(1-x)33+C
Step 15.4.8.3
Apply the distributive property.
arcsin(x)x3+√(1+x)(1-x)-(1⋅1+1(-x)+x⋅1+x(-x))√(1+x)(1-x)33+C
arcsin(x)x3+√(1+x)(1-x)-(1⋅1+1(-x)+x⋅1+x(-x))√(1+x)(1-x)33+C
Step 15.4.9
Simplify and combine like terms.
Step 15.4.9.1
Simplify each term.
Step 15.4.9.1.1
Multiply 1 by 1.
arcsin(x)x3+√(1+x)(1-x)-(1+1(-x)+x⋅1+x(-x))√(1+x)(1-x)33+C
Step 15.4.9.1.2
Multiply -x by 1.
arcsin(x)x3+√(1+x)(1-x)-(1-x+x⋅1+x(-x))√(1+x)(1-x)33+C
Step 15.4.9.1.3
Multiply x by 1.
arcsin(x)x3+√(1+x)(1-x)-(1-x+x+x(-x))√(1+x)(1-x)33+C
Step 15.4.9.1.4
Rewrite using the commutative property of multiplication.
arcsin(x)x3+√(1+x)(1-x)-(1-x+x-x⋅x)√(1+x)(1-x)33+C
Step 15.4.9.1.5
Multiply x by x by adding the exponents.
Step 15.4.9.1.5.1
Move x.
arcsin(x)x3+√(1+x)(1-x)-(1-x+x-(x⋅x))√(1+x)(1-x)33+C
Step 15.4.9.1.5.2
Multiply x by x.
arcsin(x)x3+√(1+x)(1-x)-(1-x+x-x2)√(1+x)(1-x)33+C
arcsin(x)x3+√(1+x)(1-x)-(1-x+x-x2)√(1+x)(1-x)33+C
arcsin(x)x3+√(1+x)(1-x)-(1-x+x-x2)√(1+x)(1-x)33+C
Step 15.4.9.2
Add -x and x.
arcsin(x)x3+√(1+x)(1-x)-(1+0-x2)√(1+x)(1-x)33+C
Step 15.4.9.3
Add 1 and 0.
arcsin(x)x3+√(1+x)(1-x)-(1-x2)√(1+x)(1-x)33+C
arcsin(x)x3+√(1+x)(1-x)-(1-x2)√(1+x)(1-x)33+C
Step 15.4.10
Apply the distributive property.
arcsin(x)x3+√(1+x)(1-x)-1√(1+x)(1-x)-x2√(1+x)(1-x)33+C
Step 15.4.11
Multiply √(1+x)(1-x) by 1.
arcsin(x)x3+√(1+x)(1-x)-√(1+x)(1-x)-x2√(1+x)(1-x)33+C
Step 15.4.12
Factor √(1+x)(1-x) out of √(1+x)(1-x)-x2√(1+x)(1-x).
Step 15.4.12.1
Multiply by 1.
arcsin(x)x3+√(1+x)(1-x)-√(1+x)(1-x)⋅1-x2√(1+x)(1-x)33+C
Step 15.4.12.2
Factor √(1+x)(1-x) out of -x2√(1+x)(1-x).
arcsin(x)x3+√(1+x)(1-x)-√(1+x)(1-x)⋅1+√(1+x)(1-x)(-x2)33+C
Step 15.4.12.3
Factor √(1+x)(1-x) out of √(1+x)(1-x)⋅1+√(1+x)(1-x)(-x2).
arcsin(x)x3+√(1+x)(1-x)-√(1+x)(1-x)(1-x2)33+C
arcsin(x)x3+√(1+x)(1-x)-√(1+x)(1-x)(1-x2)33+C
Step 15.4.13
Rewrite 1 as 12.
arcsin(x)x3+√(1+x)(1-x)-√(1+x)(1-x)(12-x2)33+C
Step 15.4.14
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=1 and b=x.
arcsin(x)x3+√(1+x)(1-x)-√(1+x)(1-x)(1+x)(1-x)33+C
arcsin(x)x3+√(1+x)(1-x)-√(1+x)(1-x)(1+x)(1-x)33+C
Step 15.5
To write √(1+x)(1-x) as a fraction with a common denominator, multiply by 33.
arcsin(x)x3+√(1+x)(1-x)⋅33-√(1+x)(1-x)(1+x)(1-x)33+C
Step 15.6
Combine √(1+x)(1-x) and 33.
arcsin(x)x3+√(1+x)(1-x)⋅33-√(1+x)(1-x)(1+x)(1-x)33+C
Step 15.7
Combine the numerators over the common denominator.
arcsin(x)x3+√(1+x)(1-x)⋅3-√(1+x)(1-x)(1+x)(1-x)33+C
Step 15.8
Simplify the numerator.
Step 15.8.1
Factor √(1+x)(1-x) out of √(1+x)(1-x)⋅3-√(1+x)(1-x)(1+x)(1-x).
Step 15.8.1.1
Factor √(1+x)(1-x) out of √(1+x)(1-x)⋅3.
arcsin(x)x3+√(1+x)(1-x)(3)-√(1+x)(1-x)(1+x)(1-x)33+C
Step 15.8.1.2
Factor √(1+x)(1-x) out of -√(1+x)(1-x)(1+x)(1-x).
arcsin(x)x3+√(1+x)(1-x)(3)+√(1+x)(1-x)((-1(1+x))(1-x))33+C
Step 15.8.1.3
Factor √(1+x)(1-x) out of √(1+x)(1-x)(3)+√(1+x)(1-x)((-1(1+x))(1-x)).
arcsin(x)x3+√(1+x)(1-x)(3+(-1(1+x))(1-x))33+C
arcsin(x)x3+√(1+x)(1-x)(3+(-1(1+x))(1-x))33+C
Step 15.8.2
Apply the distributive property.
arcsin(x)x3+√(1+x)(1-x)(3+(-1⋅1-1x)(1-x))33+C
Step 15.8.3
Multiply -1 by 1.
arcsin(x)x3+√(1+x)(1-x)(3+(-1-1x)(1-x))33+C
Step 15.8.4
Rewrite -1x as -x.
arcsin(x)x3+√(1+x)(1-x)(3+(-1-x)(1-x))33+C
Step 15.8.5
Expand (-1-x)(1-x) using the FOIL Method.
Step 15.8.5.1
Apply the distributive property.
arcsin(x)x3+√(1+x)(1-x)(3-1(1-x)-x(1-x))33+C
Step 15.8.5.2
Apply the distributive property.
arcsin(x)x3+√(1+x)(1-x)(3-1⋅1-1(-x)-x(1-x))33+C
Step 15.8.5.3
Apply the distributive property.
arcsin(x)x3+√(1+x)(1-x)(3-1⋅1-1(-x)-x⋅1-x(-x))33+C
arcsin(x)x3+√(1+x)(1-x)(3-1⋅1-1(-x)-x⋅1-x(-x))33+C
Step 15.8.6
Simplify and combine like terms.
Step 15.8.6.1
Simplify each term.
Step 15.8.6.1.1
Multiply -1 by 1.
arcsin(x)x3+√(1+x)(1-x)(3-1-1(-x)-x⋅1-x(-x))33+C
Step 15.8.6.1.2
Multiply -1(-x).
Step 15.8.6.1.2.1
Multiply -1 by -1.
arcsin(x)x3+√(1+x)(1-x)(3-1+1x-x⋅1-x(-x))33+C
Step 15.8.6.1.2.2
Multiply x by 1.
arcsin(x)x3+√(1+x)(1-x)(3-1+x-x⋅1-x(-x))33+C
arcsin(x)x3+√(1+x)(1-x)(3-1+x-x⋅1-x(-x))33+C
Step 15.8.6.1.3
Multiply -1 by 1.
arcsin(x)x3+√(1+x)(1-x)(3-1+x-x-x(-x))33+C
Step 15.8.6.1.4
Rewrite using the commutative property of multiplication.
arcsin(x)x3+√(1+x)(1-x)(3-1+x-x-1⋅-1x⋅x)33+C
Step 15.8.6.1.5
Multiply x by x by adding the exponents.
Step 15.8.6.1.5.1
Move x.
arcsin(x)x3+√(1+x)(1-x)(3-1+x-x-1⋅-1(x⋅x))33+C
Step 15.8.6.1.5.2
Multiply x by x.
arcsin(x)x3+√(1+x)(1-x)(3-1+x-x-1⋅-1x2)33+C
arcsin(x)x3+√(1+x)(1-x)(3-1+x-x-1⋅-1x2)33+C
Step 15.8.6.1.6
Multiply -1 by -1.
arcsin(x)x3+√(1+x)(1-x)(3-1+x-x+1x2)33+C
Step 15.8.6.1.7
Multiply x2 by 1.
arcsin(x)x3+√(1+x)(1-x)(3-1+x-x+x2)33+C
arcsin(x)x3+√(1+x)(1-x)(3-1+x-x+x2)33+C
Step 15.8.6.2
Subtract x from x.
arcsin(x)x3+√(1+x)(1-x)(3-1+0+x2)33+C
Step 15.8.6.3
Add -1 and 0.
arcsin(x)x3+√(1+x)(1-x)(3-1+x2)33+C
arcsin(x)x3+√(1+x)(1-x)(3-1+x2)33+C
Step 15.8.7
Subtract 1 from 3.
arcsin(x)x3+√(1+x)(1-x)(2+x2)33+C
arcsin(x)x3+√(1+x)(1-x)(2+x2)33+C
arcsin(x)x3+√(1+x)(1-x)(2+x2)33+C
Step 16
Reorder terms.
13(arcsin(x)x3+√(1+x)(1-x)(2+x2)3)+C