Enter a problem...
Calculus Examples
Step 1
Differentiate both sides of the equation.
Step 2
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Step 2.2.1
Differentiate using the chain rule, which states that is where and .
Step 2.2.1.1
To apply the Chain Rule, set as .
Step 2.2.1.2
Differentiate using the Power Rule which states that is where .
Step 2.2.1.3
Replace all occurrences of with .
Step 2.2.2
Rewrite as .
Step 2.3
Evaluate .
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Differentiate using the chain rule, which states that is where and .
Step 2.3.2.1
To apply the Chain Rule, set as .
Step 2.3.2.2
Differentiate using the Power Rule which states that is where .
Step 2.3.2.3
Replace all occurrences of with .
Step 2.3.3
Rewrite as .
Step 2.3.4
Multiply by .
Step 2.4
Evaluate .
Step 2.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.4.2
Rewrite as .
Step 2.5
Evaluate .
Step 2.5.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.5.2
Differentiate using the Power Rule which states that is where .
Step 2.5.3
Multiply by .
Step 2.6
Evaluate .
Step 2.6.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.6.2
Differentiate using the Power Rule which states that is where .
Step 2.6.3
Multiply by .
Step 2.7
Reorder terms.
Step 3
Since is constant with respect to , the derivative of with respect to is .
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Step 5.1
Move all terms not containing to the right side of the equation.
Step 5.1.1
Subtract from both sides of the equation.
Step 5.1.2
Subtract from both sides of the equation.
Step 5.2
Factor out of .
Step 5.2.1
Factor out of .
Step 5.2.2
Factor out of .
Step 5.2.3
Factor out of .
Step 5.2.4
Factor out of .
Step 5.2.5
Factor out of .
Step 5.3
Factor.
Step 5.3.1
Factor using the AC method.
Step 5.3.1.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 5.3.1.2
Write the factored form using these integers.
Step 5.3.2
Remove unnecessary parentheses.
Step 5.4
Divide each term in by and simplify.
Step 5.4.1
Divide each term in by .
Step 5.4.2
Simplify the left side.
Step 5.4.2.1
Cancel the common factor of .
Step 5.4.2.1.1
Cancel the common factor.
Step 5.4.2.1.2
Rewrite the expression.
Step 5.4.2.2
Cancel the common factor of .
Step 5.4.2.2.1
Cancel the common factor.
Step 5.4.2.2.2
Rewrite the expression.
Step 5.4.2.3
Cancel the common factor of .
Step 5.4.2.3.1
Cancel the common factor.
Step 5.4.2.3.2
Divide by .
Step 5.4.3
Simplify the right side.
Step 5.4.3.1
Simplify each term.
Step 5.4.3.1.1
Move the negative in front of the fraction.
Step 5.4.3.1.2
Move the negative in front of the fraction.
Step 6
Replace with .