Enter a problem...
Calculus Examples
Step 1
The function can be found by finding the indefinite integral of the derivative .
Step 2
Set up the integral to solve.
Step 3
Split the single integral into multiple integrals.
Step 4
Since is constant with respect to , move out of the integral.
Step 5
Step 5.1
Let . Find .
Step 5.1.1
Differentiate .
Step 5.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 5.1.3
Differentiate using the Power Rule which states that is where .
Step 5.1.4
Multiply by .
Step 5.2
Rewrite the problem using and .
Step 6
Step 6.1
Multiply by the reciprocal of the fraction to divide by .
Step 6.2
Multiply by .
Step 6.3
Move to the left of .
Step 7
Since is constant with respect to , move out of the integral.
Step 8
Multiply by .
Step 9
The integral of with respect to is .
Step 10
Step 10.1
Let . Find .
Step 10.1.1
Differentiate .
Step 10.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 10.1.3
Differentiate using the Power Rule which states that is where .
Step 10.1.4
Multiply by .
Step 10.2
Rewrite the problem using and .
Step 11
Combine and .
Step 12
Since is constant with respect to , move out of the integral.
Step 13
The integral of with respect to is .
Step 14
Simplify.
Step 15
Step 15.1
Replace all occurrences of with .
Step 15.2
Replace all occurrences of with .
Step 16
Reorder terms.
Step 17
The answer is the antiderivative of the function .