Calculus Examples

Find the Antiderivative cos(x)^4-sin(x)^4
cos4(x)-sin4(x)
Step 1
Write cos4(x)-sin4(x) as a function.
f(x)=cos4(x)-sin4(x)
Step 2
The function F(x) can be found by finding the indefinite integral of the derivative f(x).
F(x)=f(x)dx
Step 3
Set up the integral to solve.
F(x)=cos4(x)-sin4(x)dx
Step 4
Split the single integral into multiple integrals.
cos4(x)dx+-sin4(x)dx
Step 5
Simplify with factoring out.
Tap for more steps...
Step 5.1
Factor 2 out of 4.
cos(x)2(2)dx+-sin4(x)dx
Step 5.2
Rewrite cos(x)2(2) as exponentiation.
(cos2(x))2dx+-sin4(x)dx
(cos2(x))2dx+-sin4(x)dx
Step 6
Use the half-angle formula to rewrite cos2(x) as 1+cos(2x)2.
(1+cos(2x)2)2dx+-sin4(x)dx
Step 7
Let u1=2x. Then du1=2dx, so 12du1=dx. Rewrite using u1 and du1.
Tap for more steps...
Step 7.1
Let u1=2x. Find du1dx.
Tap for more steps...
Step 7.1.1
Differentiate 2x.
ddx[2x]
Step 7.1.2
Since 2 is constant with respect to x, the derivative of 2x with respect to x is 2ddx[x].
2ddx[x]
Step 7.1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
21
Step 7.1.4
Multiply 2 by 1.
2
2
Step 7.2
Rewrite the problem using u1 and du1.
(1+cos(u1)2)212du1+-sin4(x)dx
(1+cos(u1)2)212du1+-sin4(x)dx
Step 8
Since 12 is constant with respect to u1, move 12 out of the integral.
12(1+cos(u1)2)2du1+-sin4(x)dx
Step 9
Simplify terms.
Tap for more steps...
Step 9.1
Rewrite 1+cos(u1)2 as a product.
12(12(1+cos(u1)))2du1+-sin4(x)dx
Step 9.2
Expand (12(1+cos(u1)))2.
Tap for more steps...
Step 9.2.1
Rewrite the exponentiation as a product.
1212(1+cos(u1))(12(1+cos(u1)))du1+-sin4(x)dx
Step 9.2.2
Apply the distributive property.
12(121+12cos(u1))(12(1+cos(u1)))du1+-sin4(x)dx
Step 9.2.3
Apply the distributive property.
12(121+12cos(u1))(121+12cos(u1))du1+-sin4(x)dx
Step 9.2.4
Apply the distributive property.
12121(121+12cos(u1))+12cos(u1)(121+12cos(u1))du1+-sin4(x)dx
Step 9.2.5
Apply the distributive property.
12121(121)+121(12cos(u1))+12cos(u1)(121+12cos(u1))du1+-sin4(x)dx
Step 9.2.6
Apply the distributive property.
12121(121)+121(12cos(u1))+12cos(u1)(121)+12cos(u1)(12cos(u1))du1+-sin4(x)dx
Step 9.2.7
Reorder 12 and 1.
12112(121)+121(12cos(u1))+12cos(u1)(121)+12cos(u1)(12cos(u1))du1+-sin4(x)dx
Step 9.2.8
Reorder 12 and 1.
12112(112)+121(12cos(u1))+12cos(u1)(121)+12cos(u1)(12cos(u1))du1+-sin4(x)dx
Step 9.2.9
Move 12.
12111212+121(12cos(u1))+12cos(u1)(121)+12cos(u1)(12cos(u1))du1+-sin4(x)dx
Step 9.2.10
Reorder 12 and 1.
12111212+112(12cos(u1))+12cos(u1)(121)+12cos(u1)(12cos(u1))du1+-sin4(x)dx
Step 9.2.11
Reorder 12 and 1.
12111212+11212cos(u1)+12cos(u1)(112)+12cos(u1)(12cos(u1))du1+-sin4(x)dx
Step 9.2.12
Move cos(u1).
12111212+11212cos(u1)+121cos(u1)12+12cos(u1)(12cos(u1))du1+-sin4(x)dx
Step 9.2.13
Reorder 12 and 1.
12111212+11212cos(u1)+112cos(u1)12+12cos(u1)(12cos(u1))du1+-sin4(x)dx
Step 9.2.14
Multiply 1 by 1.
121(12)12+1(12)12cos(u1)+1(12)cos(u1)12+12cos(u1)12cos(u1)du1+-sin4(x)dx
Step 9.2.15
Multiply 12 by 1.
121212+1(12)12cos(u1)+1(12)cos(u1)12+12cos(u1)12cos(u1)du1+-sin4(x)dx
Step 9.2.16
Multiply 12 by 12.
12122+1(12)12cos(u1)+1(12)cos(u1)12+12cos(u1)12cos(u1)du1+-sin4(x)dx
Step 9.2.17
Multiply 2 by 2.
1214+1(12)12cos(u1)+1(12)cos(u1)12+12cos(u1)12cos(u1)du1+-sin4(x)dx
Step 9.2.18
Multiply 12 by 1.
1214+1212cos(u1)+1(12)cos(u1)12+12cos(u1)12cos(u1)du1+-sin4(x)dx
Step 9.2.19
Multiply 12 by 12.
1214+122cos(u1)+1(12)cos(u1)12+12cos(u1)12cos(u1)du1+-sin4(x)dx
Step 9.2.20
Multiply 2 by 2.
1214+14cos(u1)+1(12)cos(u1)12+12cos(u1)12cos(u1)du1+-sin4(x)dx
Step 9.2.21
Combine 14 and cos(u1).
1214+cos(u1)4+1(12)cos(u1)12+12cos(u1)12cos(u1)du1+-sin4(x)dx
Step 9.2.22
Multiply 12 by 1.
1214+cos(u1)4+12cos(u1)12+12cos(u1)12cos(u1)du1+-sin4(x)dx
Step 9.2.23
Combine 12 and cos(u1).
1214+cos(u1)4+cos(u1)212+12cos(u1)12cos(u1)du1+-sin4(x)dx
Step 9.2.24
Multiply cos(u1)2 by 12.
1214+cos(u1)4+cos(u1)22+12cos(u1)12cos(u1)du1+-sin4(x)dx
Step 9.2.25
Multiply 2 by 2.
1214+cos(u1)4+cos(u1)4+12cos(u1)12cos(u1)du1+-sin4(x)dx
Step 9.2.26
Combine 12 and cos(u1).
1214+cos(u1)4+cos(u1)4+cos(u1)212cos(u1)du1+-sin4(x)dx
Step 9.2.27
Multiply cos(u1)2 by 12.
1214+cos(u1)4+cos(u1)4+cos(u1)22cos(u1)du1+-sin4(x)dx
Step 9.2.28
Multiply 2 by 2.
1214+cos(u1)4+cos(u1)4+cos(u1)4cos(u1)du1+-sin4(x)dx
Step 9.2.29
Combine cos(u1)4 and cos(u1).
1214+cos(u1)4+cos(u1)4+cos(u1)cos(u1)4du1+-sin4(x)dx
Step 9.2.30
Raise cos(u1) to the power of 1.
1214+cos(u1)4+cos(u1)4+cos1(u1)cos(u1)4du1+-sin4(x)dx
Step 9.2.31
Raise cos(u1) to the power of 1.
1214+cos(u1)4+cos(u1)4+cos1(u1)cos1(u1)4du1+-sin4(x)dx
Step 9.2.32
Use the power rule aman=am+n to combine exponents.
1214+cos(u1)4+cos(u1)4+cos(u1)1+14du1+-sin4(x)dx
Step 9.2.33
Add 1 and 1.
1214+cos(u1)4+cos(u1)4+cos2(u1)4du1+-sin4(x)dx
Step 9.2.34
Add cos(u1)4 and cos(u1)4.
1214+2cos(u1)4+cos2(u1)4du1+-sin4(x)dx
Step 9.2.35
Combine 2 and cos(u1)4.
1214+2cos(u1)4+cos2(u1)4du1+-sin4(x)dx
Step 9.2.36
Reorder 2cos(u1)4 and cos2(u1)4.
1214+cos2(u1)4+2cos(u1)4du1+-sin4(x)dx
Step 9.2.37
Reorder 14 and cos2(u1)4.
12cos2(u1)4+14+2cos(u1)4du1+-sin4(x)dx
12cos2(u1)4+14+2cos(u1)4du1+-sin4(x)dx
Step 9.3
Cancel the common factor of 2 and 4.
Tap for more steps...
Step 9.3.1
Factor 2 out of 2cos(u1).
12cos2(u1)4+14+2(cos(u1))4du1+-sin4(x)dx
Step 9.3.2
Cancel the common factors.
Tap for more steps...
Step 9.3.2.1
Factor 2 out of 4.
12cos2(u1)4+14+2cos(u1)22du1+-sin4(x)dx
Step 9.3.2.2
Cancel the common factor.
12cos2(u1)4+14+2cos(u1)22du1+-sin4(x)dx
Step 9.3.2.3
Rewrite the expression.
12cos2(u1)4+14+cos(u1)2du1+-sin4(x)dx
12cos2(u1)4+14+cos(u1)2du1+-sin4(x)dx
12cos2(u1)4+14+cos(u1)2du1+-sin4(x)dx
12cos2(u1)4+14+cos(u1)2du1+-sin4(x)dx
Step 10
Split the single integral into multiple integrals.
12(cos2(u1)4du1+14du1+cos(u1)2du1)+-sin4(x)dx
Step 11
Since 14 is constant with respect to u1, move 14 out of the integral.
12(14cos2(u1)du1+14du1+cos(u1)2du1)+-sin4(x)dx
Step 12
Use the half-angle formula to rewrite cos2(u1) as 1+cos(2u1)2.
12(141+cos(2u1)2du1+14du1+cos(u1)2du1)+-sin4(x)dx
Step 13
Since 12 is constant with respect to u1, move 12 out of the integral.
12(14(121+cos(2u1)du1)+14du1+cos(u1)2du1)+-sin4(x)dx
Step 14
Simplify.
Tap for more steps...
Step 14.1
Multiply 12 by 14.
12(1241+cos(2u1)du1+14du1+cos(u1)2du1)+-sin4(x)dx
Step 14.2
Multiply 2 by 4.
12(181+cos(2u1)du1+14du1+cos(u1)2du1)+-sin4(x)dx
12(181+cos(2u1)du1+14du1+cos(u1)2du1)+-sin4(x)dx
Step 15
Split the single integral into multiple integrals.
12(18(du1+cos(2u1)du1)+14du1+cos(u1)2du1)+-sin4(x)dx
Step 16
Apply the constant rule.
12(18(u1+C+cos(2u1)du1)+14du1+cos(u1)2du1)+-sin4(x)dx
Step 17
Let u2=2u1. Then du2=2du1, so 12du2=du1. Rewrite using u2 and du2.
Tap for more steps...
Step 17.1
Let u2=2u1. Find du2du1.
Tap for more steps...
Step 17.1.1
Differentiate 2u1.
ddu1[2u1]
Step 17.1.2
Since 2 is constant with respect to u1, the derivative of 2u1 with respect to u1 is 2ddu1[u1].
2ddu1[u1]
Step 17.1.3
Differentiate using the Power Rule which states that ddu1[u1n] is nu1n-1 where n=1.
21
Step 17.1.4
Multiply 2 by 1.
2
2
Step 17.2
Rewrite the problem using u2 and du2.
12(18(u1+C+cos(u2)12du2)+14du1+cos(u1)2du1)+-sin4(x)dx
12(18(u1+C+cos(u2)12du2)+14du1+cos(u1)2du1)+-sin4(x)dx
Step 18
Combine cos(u2) and 12.
12(18(u1+C+cos(u2)2du2)+14du1+cos(u1)2du1)+-sin4(x)dx
Step 19
Since 12 is constant with respect to u2, move 12 out of the integral.
12(18(u1+C+12cos(u2)du2)+14du1+cos(u1)2du1)+-sin4(x)dx
Step 20
The integral of cos(u2) with respect to u2 is sin(u2).
12(18(u1+C+12(sin(u2)+C))+14du1+cos(u1)2du1)+-sin4(x)dx
Step 21
Apply the constant rule.
12(18(u1+C+12(sin(u2)+C))+14u1+C+cos(u1)2du1)+-sin4(x)dx
Step 22
Combine 14 and u1.
12(18(u1+C+12(sin(u2)+C))+u14+C+cos(u1)2du1)+-sin4(x)dx
Step 23
Since 12 is constant with respect to u1, move 12 out of the integral.
12(18(u1+C+12(sin(u2)+C))+u14+C+12cos(u1)du1)+-sin4(x)dx
Step 24
The integral of cos(u1) with respect to u1 is sin(u1).
12(18(u1+C+12(sin(u2)+C))+u14+C+12(sin(u1)+C))+-sin4(x)dx
Step 25
Since -1 is constant with respect to x, move -1 out of the integral.
12(18(u1+C+12(sin(u2)+C))+u14+C+12(sin(u1)+C))-sin4(x)dx
Step 26
Simplify with factoring out.
Tap for more steps...
Step 26.1
Factor 2 out of 4.
12(18(u1+C+12(sin(u2)+C))+u14+C+12(sin(u1)+C))-sin(x)2(2)dx
Step 26.2
Rewrite sin(x)2(2) as exponentiation.
12(18(u1+C+12(sin(u2)+C))+u14+C+12(sin(u1)+C))-(sin2(x))2dx
12(18(u1+C+12(sin(u2)+C))+u14+C+12(sin(u1)+C))-(sin2(x))2dx
Step 27
Use the half-angle formula to rewrite sin2(x) as 1-cos(2x)2.
12(18(u1+C+12(sin(u2)+C))+u14+C+12(sin(u1)+C))-(1-cos(2x)2)2dx
Step 28
Let u3=2x. Then du3=2dx, so 12du3=dx. Rewrite using u3 and du3.
Tap for more steps...
Step 28.1
Let u3=2x. Find du3dx.
Tap for more steps...
Step 28.1.1
Differentiate 2x.
ddx[2x]
Step 28.1.2
Since 2 is constant with respect to x, the derivative of 2x with respect to x is 2ddx[x].
2ddx[x]
Step 28.1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
21
Step 28.1.4
Multiply 2 by 1.
2
2
Step 28.2
Rewrite the problem using u3 and du3.
12(18(u1+C+12(sin(u2)+C))+u14+C+12(sin(u1)+C))-(1-cos(u3)2)212du3
12(18(u1+C+12(sin(u2)+C))+u14+C+12(sin(u1)+C))-(1-cos(u3)2)212du3
Step 29
Since 12 is constant with respect to u3, move 12 out of the integral.
12(18(u1+C+12(sin(u2)+C))+u14+C+12(sin(u1)+C))-(12(1-cos(u3)2)2du3)
Step 30
Simplify by multiplying through.
Tap for more steps...
Step 30.1
Rewrite as a product.
Step 30.2
Expand .
Tap for more steps...
Step 30.2.1
Rewrite the exponentiation as a product.
Step 30.2.2
Apply the distributive property.
Step 30.2.3
Apply the distributive property.
Step 30.2.4
Apply the distributive property.
Step 30.2.5
Apply the distributive property.
Step 30.2.6
Apply the distributive property.
Step 30.2.7
Reorder and .
Step 30.2.8
Reorder and .
Step 30.2.9
Move .
Step 30.2.10
Reorder and .
Step 30.2.11
Reorder and .
Step 30.2.12
Move parentheses.
Step 30.2.13
Move .
Step 30.2.14
Reorder and .
Step 30.2.15
Reorder and .
Step 30.2.16
Move .
Step 30.2.17
Move .
Step 30.2.18
Reorder and .
Step 30.2.19
Reorder and .
Step 30.2.20
Move parentheses.
Step 30.2.21
Move .
Step 30.2.22
Move .
Step 30.2.23
Multiply by .
Step 30.2.24
Multiply by .
Step 30.2.25
Multiply by .
Step 30.2.26
Multiply by .
Step 30.2.27
Multiply by .
Step 30.2.28
Combine and .
Step 30.2.29
Multiply by .
Step 30.2.30
Combine and .
Step 30.2.31
Multiply by .
Step 30.2.32
Combine and .
Step 30.2.33
Combine and .
Step 30.2.34
Multiply by .
Step 30.2.35
Multiply by .
Step 30.2.36
Multiply by .
Step 30.2.37
Combine and .
Step 30.2.38
Multiply by .
Step 30.2.39
Multiply by .
Step 30.2.40
Combine and .
Step 30.2.41
Raise to the power of .
Step 30.2.42
Raise to the power of .
Step 30.2.43
Use the power rule to combine exponents.
Step 30.2.44
Add and .
Step 30.2.45
Subtract from .
Step 30.2.46
Combine and .
Step 30.2.47
Reorder and .
Step 30.2.48
Reorder and .
Step 30.3
Simplify.
Tap for more steps...
Step 30.3.1
Cancel the common factor of and .
Tap for more steps...
Step 30.3.1.1
Factor out of .
Step 30.3.1.2
Cancel the common factors.
Tap for more steps...
Step 30.3.1.2.1
Factor out of .
Step 30.3.1.2.2
Cancel the common factor.
Step 30.3.1.2.3
Rewrite the expression.
Step 30.3.2
Move the negative in front of the fraction.
Step 31
Split the single integral into multiple integrals.
Step 32
Since is constant with respect to , move out of the integral.
Step 33
Use the half-angle formula to rewrite as .
Step 34
Since is constant with respect to , move out of the integral.
Step 35
Simplify.
Tap for more steps...
Step 35.1
Multiply by .
Step 35.2
Multiply by .
Step 36
Split the single integral into multiple integrals.
Step 37
Apply the constant rule.
Step 38
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 38.1
Let . Find .
Tap for more steps...
Step 38.1.1
Differentiate .
Step 38.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 38.1.3
Differentiate using the Power Rule which states that is where .
Step 38.1.4
Multiply by .
Step 38.2
Rewrite the problem using and .
Step 39
Combine and .
Step 40
Since is constant with respect to , move out of the integral.
Step 41
The integral of with respect to is .
Step 42
Apply the constant rule.
Step 43
Combine and .
Step 44
Since is constant with respect to , move out of the integral.
Step 45
Since is constant with respect to , move out of the integral.
Step 46
The integral of with respect to is .
Step 47
Simplify.
Tap for more steps...
Step 47.1
Simplify.
Step 47.2
Simplify.
Tap for more steps...
Step 47.2.1
To write as a fraction with a common denominator, multiply by .
Step 47.2.2
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 47.2.2.1
Multiply by .
Step 47.2.2.2
Multiply by .
Step 47.2.3
Combine the numerators over the common denominator.
Step 47.2.4
Move to the left of .
Step 47.2.5
Add and .
Step 47.2.6
Combine and .
Step 47.2.7
Combine and .
Step 47.2.8
To write as a fraction with a common denominator, multiply by .
Step 47.2.9
Combine and .
Step 47.2.10
Combine the numerators over the common denominator.
Step 47.2.11
Combine and .
Step 47.2.12
Cancel the common factor of and .
Tap for more steps...
Step 47.2.12.1
Factor out of .
Step 47.2.12.2
Cancel the common factors.
Tap for more steps...
Step 47.2.12.2.1
Factor out of .
Step 47.2.12.2.2
Cancel the common factor.
Step 47.2.12.2.3
Rewrite the expression.
Step 48
Substitute back in for each integration substitution variable.
Tap for more steps...
Step 48.1
Replace all occurrences of with .
Step 48.2
Replace all occurrences of with .
Step 48.3
Replace all occurrences of with .
Step 48.4
Replace all occurrences of with .
Step 48.5
Replace all occurrences of with .
Step 48.6
Replace all occurrences of with .
Step 49
Simplify.
Tap for more steps...
Step 49.1
Simplify each term.
Tap for more steps...
Step 49.1.1
Cancel the common factor of and .
Tap for more steps...
Step 49.1.1.1
Factor out of .
Step 49.1.1.2
Cancel the common factors.
Tap for more steps...
Step 49.1.1.2.1
Factor out of .
Step 49.1.1.2.2
Cancel the common factor.
Step 49.1.1.2.3
Rewrite the expression.
Step 49.1.2
Multiply by .
Step 49.2
Apply the distributive property.
Step 49.3
Simplify.
Tap for more steps...
Step 49.3.1
Multiply .
Tap for more steps...
Step 49.3.1.1
Multiply by .
Step 49.3.1.2
Multiply by .
Step 49.3.2
Multiply .
Tap for more steps...
Step 49.3.2.1
Multiply by .
Step 49.3.2.2
Multiply by .
Step 49.3.3
Multiply .
Tap for more steps...
Step 49.3.3.1
Multiply by .
Step 49.3.3.2
Multiply by .
Step 49.4
Simplify each term.
Tap for more steps...
Step 49.4.1
Cancel the common factor of and .
Tap for more steps...
Step 49.4.1.1
Factor out of .
Step 49.4.1.2
Cancel the common factors.
Tap for more steps...
Step 49.4.1.2.1
Factor out of .
Step 49.4.1.2.2
Cancel the common factor.
Step 49.4.1.2.3
Rewrite the expression.
Step 49.4.2
Multiply by .
Step 49.4.3
Simplify the numerator.
Tap for more steps...
Step 49.4.3.1
Apply the distributive property.
Step 49.4.3.2
Cancel the common factor of .
Tap for more steps...
Step 49.4.3.2.1
Factor out of .
Step 49.4.3.2.2
Factor out of .
Step 49.4.3.2.3
Cancel the common factor.
Step 49.4.3.2.4
Rewrite the expression.
Step 49.4.3.3
Combine and .
Step 49.4.3.4
Multiply .
Tap for more steps...
Step 49.4.3.4.1
Multiply by .
Step 49.4.3.4.2
Multiply by .
Step 49.5
Combine the numerators over the common denominator.
Step 49.6
To write as a fraction with a common denominator, multiply by .
Step 49.7
Combine and .
Step 49.8
Combine the numerators over the common denominator.
Step 49.9
Add and .
Tap for more steps...
Step 49.9.1
Reorder and .
Step 49.9.2
Add and .
Step 49.10
Multiply .
Tap for more steps...
Step 49.10.1
Multiply by .
Step 49.10.2
Multiply by .
Step 50
Reorder terms.
Step 51
The answer is the antiderivative of the function .