Enter a problem...
Calculus Examples
2x2+2y2+2z2+x+y+z=92x2+2y2+2z2+x+y+z=9
Step 1
Step 1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=2a=2
b=1b=1
c=0c=0
Step 1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.3
Find the value of dd using the formula d=b2ad=b2a.
Step 1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=12⋅2d=12⋅2
Step 1.3.2
Multiply 22 by 22.
d=14d=14
d=14d=14
Step 1.4
Find the value of ee using the formula e=c-b24ae=c−b24a.
Step 1.4.1
Substitute the values of cc, bb and aa into the formula e=c-b24ae=c−b24a.
e=0-124⋅2e=0−124⋅2
Step 1.4.2
Simplify the right side.
Step 1.4.2.1
Simplify each term.
Step 1.4.2.1.1
One to any power is one.
e=0-14⋅2e=0−14⋅2
Step 1.4.2.1.2
Multiply 44 by 22.
e=0-18e=0−18
e=0-18e=0−18
Step 1.4.2.2
Subtract 1818 from 00.
e=-18e=−18
e=-18e=−18
e=-18e=−18
Step 1.5
Substitute the values of aa, dd, and ee into the vertex form 2(x+14)2-182(x+14)2−18.
2(x+14)2-182(x+14)2−18
2(x+14)2-182(x+14)2−18
Step 2
Substitute 2(x+14)2-182(x+14)2−18 for 2x2+x2x2+x in the equation 2x2+2y2+2z2+x+y+z=92x2+2y2+2z2+x+y+z=9.
2(x+14)2-18+2y2+2z2+y+z=92(x+14)2−18+2y2+2z2+y+z=9
Step 3
Move -18−18 to the right side of the equation by adding 1818 to both sides.
2(x+14)2+2y2+2z2+y+z=9+182(x+14)2+2y2+2z2+y+z=9+18
Step 4
Step 4.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=2a=2
b=1b=1
c=0c=0
Step 4.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 4.3
Find the value of dd using the formula d=b2ad=b2a.
Step 4.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=12⋅2d=12⋅2
Step 4.3.2
Multiply 22 by 22.
d=14d=14
d=14d=14
Step 4.4
Find the value of ee using the formula e=c-b24ae=c−b24a.
Step 4.4.1
Substitute the values of cc, bb and aa into the formula e=c-b24ae=c−b24a.
e=0-124⋅2e=0−124⋅2
Step 4.4.2
Simplify the right side.
Step 4.4.2.1
Simplify each term.
Step 4.4.2.1.1
One to any power is one.
e=0-14⋅2e=0−14⋅2
Step 4.4.2.1.2
Multiply 44 by 22.
e=0-18e=0−18
e=0-18e=0−18
Step 4.4.2.2
Subtract 1818 from 00.
e=-18e=−18
e=-18e=−18
e=-18e=−18
Step 4.5
Substitute the values of aa, dd, and ee into the vertex form 2(y+14)2-182(y+14)2−18.
2(y+14)2-182(y+14)2−18
2(y+14)2-182(y+14)2−18
Step 5
Substitute 2(y+14)2-182(y+14)2−18 for 2y2+y2y2+y in the equation 2x2+2y2+2z2+x+y+z=92x2+2y2+2z2+x+y+z=9.
2(x+14)2+2(y+14)2-18=9+182(x+14)2+2(y+14)2−18=9+18
Step 6
Move -18−18 to the right side of the equation by adding 1818 to both sides.
2(x+14)2+2(y+14)2=9+18+182(x+14)2+2(y+14)2=9+18+18
Step 7
Step 7.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=2a=2
b=1b=1
c=0c=0
Step 7.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 7.3
Find the value of dd using the formula d=b2ad=b2a.
Step 7.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=12⋅2d=12⋅2
Step 7.3.2
Multiply 22 by 22.
d=14d=14
d=14d=14
Step 7.4
Find the value of ee using the formula e=c-b24ae=c−b24a.
Step 7.4.1
Substitute the values of cc, bb and aa into the formula e=c-b24ae=c−b24a.
e=0-124⋅2e=0−124⋅2
Step 7.4.2
Simplify the right side.
Step 7.4.2.1
Simplify each term.
Step 7.4.2.1.1
One to any power is one.
e=0-14⋅2e=0−14⋅2
Step 7.4.2.1.2
Multiply 44 by 22.
e=0-18e=0−18
e=0-18e=0−18
Step 7.4.2.2
Subtract 1818 from 00.
e=-18e=−18
e=-18e=−18
e=-18e=−18
Step 7.5
Substitute the values of aa, dd, and ee into the vertex form 2(z+14)2-182(z+14)2−18.
2(z+14)2-182(z+14)2−18
2(z+14)2-182(z+14)2−18
Step 8
Substitute 2(z+14)2-182(z+14)2−18 for 2z2+z2z2+z in the equation 2x2+2y2+2z2+x+y+z=92x2+2y2+2z2+x+y+z=9.
2(x+14)2+2(y+14)2+2(z+14)2-18=9+18+182(x+14)2+2(y+14)2+2(z+14)2−18=9+18+18
Step 9
Move -18−18 to the right side of the equation by adding 1818 to both sides.
2(x+14)2+2(y+14)2+2(z+14)2=9+18+18+182(x+14)2+2(y+14)2+2(z+14)2=9+18+18+18
Step 10
Step 10.1
Combine the numerators over the common denominator.
2(x+14)2+2(y+14)2+2(z+14)2=9+1+1+18
Step 10.2
Simplify by adding numbers.
Step 10.2.1
Add 1 and 1.
2(x+14)2+2(y+14)2+2(z+14)2=9+2+18
Step 10.2.2
Add 2 and 1.
2(x+14)2+2(y+14)2+2(z+14)2=9+38
2(x+14)2+2(y+14)2+2(z+14)2=9+38
Step 10.3
To write 9 as a fraction with a common denominator, multiply by 88.
2(x+14)2+2(y+14)2+2(z+14)2=9⋅88+38
Step 10.4
Combine 9 and 88.
2(x+14)2+2(y+14)2+2(z+14)2=9⋅88+38
Step 10.5
Combine the numerators over the common denominator.
2(x+14)2+2(y+14)2+2(z+14)2=9⋅8+38
Step 10.6
Simplify the numerator.
Step 10.6.1
Multiply 9 by 8.
2(x+14)2+2(y+14)2+2(z+14)2=72+38
Step 10.6.2
Add 72 and 3.
2(x+14)2+2(y+14)2+2(z+14)2=758
2(x+14)2+2(y+14)2+2(z+14)2=758
2(x+14)2+2(y+14)2+2(z+14)2=758
Step 11