Enter a problem...
Calculus Examples
∫1-13x2+2x+1x+2dx
Step 1
Step 1.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 0.
x | + | 2 | 3x2 | + | 2x | + | 1 |
Step 1.2
Divide the highest order term in the dividend 3x2 by the highest order term in divisor x.
3x | |||||||||
x | + | 2 | 3x2 | + | 2x | + | 1 |
Step 1.3
Multiply the new quotient term by the divisor.
3x | |||||||||
x | + | 2 | 3x2 | + | 2x | + | 1 | ||
+ | 3x2 | + | 6x |
Step 1.4
The expression needs to be subtracted from the dividend, so change all the signs in 3x2+6x
3x | |||||||||
x | + | 2 | 3x2 | + | 2x | + | 1 | ||
- | 3x2 | - | 6x |
Step 1.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
3x | |||||||||
x | + | 2 | 3x2 | + | 2x | + | 1 | ||
- | 3x2 | - | 6x | ||||||
- | 4x |
Step 1.6
Pull the next terms from the original dividend down into the current dividend.
3x | |||||||||
x | + | 2 | 3x2 | + | 2x | + | 1 | ||
- | 3x2 | - | 6x | ||||||
- | 4x | + | 1 |
Step 1.7
Divide the highest order term in the dividend -4x by the highest order term in divisor x.
3x | - | 4 | |||||||
x | + | 2 | 3x2 | + | 2x | + | 1 | ||
- | 3x2 | - | 6x | ||||||
- | 4x | + | 1 |
Step 1.8
Multiply the new quotient term by the divisor.
3x | - | 4 | |||||||
x | + | 2 | 3x2 | + | 2x | + | 1 | ||
- | 3x2 | - | 6x | ||||||
- | 4x | + | 1 | ||||||
- | 4x | - | 8 |
Step 1.9
The expression needs to be subtracted from the dividend, so change all the signs in -4x-8
3x | - | 4 | |||||||
x | + | 2 | 3x2 | + | 2x | + | 1 | ||
- | 3x2 | - | 6x | ||||||
- | 4x | + | 1 | ||||||
+ | 4x | + | 8 |
Step 1.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
3x | - | 4 | |||||||
x | + | 2 | 3x2 | + | 2x | + | 1 | ||
- | 3x2 | - | 6x | ||||||
- | 4x | + | 1 | ||||||
+ | 4x | + | 8 | ||||||
+ | 9 |
Step 1.11
The final answer is the quotient plus the remainder over the divisor.
∫1-13x-4+9x+2dx
∫1-13x-4+9x+2dx
Step 2
Split the single integral into multiple integrals.
∫1-13xdx+∫1-1-4dx+∫1-19x+2dx
Step 3
Since 3 is constant with respect to x, move 3 out of the integral.
3∫1-1xdx+∫1-1-4dx+∫1-19x+2dx
Step 4
By the Power Rule, the integral of x with respect to x is 12x2.
3(12x2]1-1)+∫1-1-4dx+∫1-19x+2dx
Step 5
Combine 12 and x2.
3(x22]1-1)+∫1-1-4dx+∫1-19x+2dx
Step 6
Apply the constant rule.
3(x22]1-1)+-4x]1-1+∫1-19x+2dx
Step 7
Since 9 is constant with respect to x, move 9 out of the integral.
3(x22]1-1)+-4x]1-1+9∫1-11x+2dx
Step 8
Step 8.1
Let u=x+2. Find dudx.
Step 8.1.1
Differentiate x+2.
ddx[x+2]
Step 8.1.2
By the Sum Rule, the derivative of x+2 with respect to x is ddx[x]+ddx[2].
ddx[x]+ddx[2]
Step 8.1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
1+ddx[2]
Step 8.1.4
Since 2 is constant with respect to x, the derivative of 2 with respect to x is 0.
1+0
Step 8.1.5
Add 1 and 0.
1
1
Step 8.2
Substitute the lower limit in for x in u=x+2.
ulower=-1+2
Step 8.3
Add -1 and 2.
ulower=1
Step 8.4
Substitute the upper limit in for x in u=x+2.
uupper=1+2
Step 8.5
Add 1 and 2.
uupper=3
Step 8.6
The values found for ulower and uupper will be used to evaluate the definite integral.
ulower=1
uupper=3
Step 8.7
Rewrite the problem using u, du, and the new limits of integration.
3(x22]1-1)+-4x]1-1+9∫311udu
3(x22]1-1)+-4x]1-1+9∫311udu
Step 9
The integral of 1u with respect to u is ln(|u|).
3(x22]1-1)+-4x]1-1+9(ln(|u|)]31)
Step 10
Step 10.1
Evaluate x22 at 1 and at -1.
3((122)-(-1)22)+-4x]1-1+9(ln(|u|)]31)
Step 10.2
Evaluate -4x at 1 and at -1.
3(122-(-1)22)+-4⋅1+4⋅-1+9(ln(|u|)]31)
Step 10.3
Evaluate ln(|u|) at 3 and at 1.
3(122-(-1)22)+-4⋅1+4⋅-1+9((ln(|3|))-ln(|1|))
Step 10.4
Simplify.
Step 10.4.1
One to any power is one.
3(12-(-1)22)-4⋅1+4⋅-1+9((ln(|3|))-ln(|1|))
Step 10.4.2
Raise -1 to the power of 2.
3(12-12)-4⋅1+4⋅-1+9((ln(|3|))-ln(|1|))
Step 10.4.3
Combine the numerators over the common denominator.
31-12-4⋅1+4⋅-1+9((ln(|3|))-ln(|1|))
Step 10.4.4
Subtract 1 from 1.
3(02)-4⋅1+4⋅-1+9((ln(|3|))-ln(|1|))
Step 10.4.5
Cancel the common factor of 0 and 2.
Step 10.4.5.1
Factor 2 out of 0.
32(0)2-4⋅1+4⋅-1+9((ln(|3|))-ln(|1|))
Step 10.4.5.2
Cancel the common factors.
Step 10.4.5.2.1
Factor 2 out of 2.
32⋅02⋅1-4⋅1+4⋅-1+9((ln(|3|))-ln(|1|))
Step 10.4.5.2.2
Cancel the common factor.
32⋅02⋅1-4⋅1+4⋅-1+9((ln(|3|))-ln(|1|))
Step 10.4.5.2.3
Rewrite the expression.
3(01)-4⋅1+4⋅-1+9((ln(|3|))-ln(|1|))
Step 10.4.5.2.4
Divide 0 by 1.
3⋅0-4⋅1+4⋅-1+9((ln(|3|))-ln(|1|))
3⋅0-4⋅1+4⋅-1+9((ln(|3|))-ln(|1|))
3⋅0-4⋅1+4⋅-1+9((ln(|3|))-ln(|1|))
Step 10.4.6
Multiply 3 by 0.
0-4⋅1+4⋅-1+9((ln(|3|))-ln(|1|))
Step 10.4.7
Multiply -4 by 1.
0-4+4⋅-1+9((ln(|3|))-ln(|1|))
Step 10.4.8
Multiply 4 by -1.
0-4-4+9((ln(|3|))-ln(|1|))
Step 10.4.9
Subtract 4 from -4.
0-8+9((ln(|3|))-ln(|1|))
Step 10.4.10
Subtract 8 from 0.
-8+9(ln(|3|)-ln(|1|))
-8+9(ln(|3|)-ln(|1|))
-8+9(ln(|3|)-ln(|1|))
Step 11
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).
-8+9ln(|3||1|)
Step 12
Step 12.1
The absolute value is the distance between a number and zero. The distance between 0 and 3 is 3.
-8+9ln(3|1|)
Step 12.2
The absolute value is the distance between a number and zero. The distance between 0 and 1 is 1.
-8+9ln(31)
Step 12.3
Divide 3 by 1.
-8+9ln(3)
-8+9ln(3)
Step 13
The result can be shown in multiple forms.
Exact Form:
-8+9ln(3)
Decimal Form:
1.88751059…
Step 14