Enter a problem...
Calculus Examples
∫5x(x-4)(3x+5)dx
Step 1
Since 5 is constant with respect to x, move 5 out of the integral.
5∫(x(x-4))(3x+5)dx
Step 2
Step 2.1
Let u=3x+5. Find dudx.
Step 2.1.1
Differentiate 3x+5.
ddx[3x+5]
Step 2.1.2
By the Sum Rule, the derivative of 3x+5 with respect to x is ddx[3x]+ddx[5].
ddx[3x]+ddx[5]
Step 2.1.3
Evaluate ddx[3x].
Step 2.1.3.1
Since 3 is constant with respect to x, the derivative of 3x with respect to x is 3ddx[x].
3ddx[x]+ddx[5]
Step 2.1.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
3⋅1+ddx[5]
Step 2.1.3.3
Multiply 3 by 1.
3+ddx[5]
3+ddx[5]
Step 2.1.4
Differentiate using the Constant Rule.
Step 2.1.4.1
Since 5 is constant with respect to x, the derivative of 5 with respect to x is 0.
3+0
Step 2.1.4.2
Add 3 and 0.
3
3
3
Step 2.2
Rewrite the problem using u and du.
5∫(u3-53)(u3-53-4)u13du
5∫(u3-53)(u3-53-4)u13du
Step 3
Step 3.1
To write -4 as a fraction with a common denominator, multiply by 33.
5∫(u3-53)(u3-53-4⋅33)u13du
Step 3.2
Combine -4 and 33.
5∫(u3-53)(u3-53+-4⋅33)u13du
Step 3.3
Combine the numerators over the common denominator.
5∫(u3-53)(u3+-5-4⋅33)u13du
Step 3.4
Simplify the numerator.
Step 3.4.1
Multiply -4 by 3.
5∫(u3-53)(u3+-5-123)u13du
Step 3.4.2
Subtract 12 from -5.
5∫(u3-53)(u3+-173)u13du
5∫(u3-53)(u3+-173)u13du
Step 3.5
Move the negative in front of the fraction.
5∫(u3-53)(u3-173)u13du
Step 3.6
Combine 13 and u.
5∫(u3-53)(u3-173)u3du
5∫(u3-53)(u3-173)u3du
Step 4
Step 4.1
Apply the distributive property.
5∫(u3(u3-173)-53(u3-173))u3du
Step 4.2
Apply the distributive property.
5∫(u3⋅u3+u3(-173)-53(u3-173))u3du
Step 4.3
Apply the distributive property.
5∫(u3⋅u3+u3(-173)-53⋅u3-53(-173))u3du
Step 4.4
Apply the distributive property.
5∫(u3⋅u3+u3(-173))u3+(-53⋅u3-53(-173))u3du
Step 4.5
Apply the distributive property.
5∫u3⋅u3u3+u3(-173)u3+(-53⋅u3-53(-173))u3du
Step 4.6
Apply the distributive property.
5∫u3⋅u3u3+u3(-173)u3-53⋅u3u3-53(-173)u3du
Step 4.7
Reorder u3 and -1.
5∫u3⋅u3u3-1⋅u3173u3-53⋅u3u3-53(-173)u3du
Step 4.8
Move 53.
5∫u3⋅u3u3-1⋅u3173u3-53⋅u3u3-1⋅-153173u3du
Step 4.9
Multiply u3 by u3.
5∫u⋅u3⋅3⋅u3-1u3173u3-53⋅u3u3-1⋅-153173u3du
Step 4.10
Raise u to the power of 1.
5∫u1u3⋅3⋅u3-1u3173u3-53⋅u3u3-1⋅-153173u3du
Step 4.11
Raise u to the power of 1.
5∫u1u13⋅3⋅u3-1u3173u3-53⋅u3u3-1⋅-153173u3du
Step 4.12
Use the power rule aman=am+n to combine exponents.
5∫u1+13⋅3⋅u3-1u3173u3-53⋅u3u3-1⋅-153173u3du
Step 4.13
Add 1 and 1.
5∫u23⋅3⋅u3-1u3173u3-53⋅u3u3-1⋅-153173u3du
Step 4.14
Multiply 3 by 3.
5∫u29⋅u3-1u3173u3-53⋅u3u3-1⋅-153173u3du
Step 4.15
Multiply u29 by u3.
5∫u2u9⋅3-1u3173u3-53⋅u3u3-1⋅-153173u3du
Step 4.16
Raise u to the power of 1.
5∫u2u19⋅3-1u3173u3-53⋅u3u3-1⋅-153173u3du
Step 4.17
Use the power rule aman=am+n to combine exponents.
5∫u2+19⋅3-1u3173u3-53⋅u3u3-1⋅-153173u3du
Step 4.18
Add 2 and 1.
5∫u39⋅3-1u3173u3-53⋅u3u3-1⋅-153173u3du
Step 4.19
Multiply 9 by 3.
5∫u327-1u3173u3-53⋅u3u3-1⋅-153173u3du
Step 4.20
Combine -1u3 and 173.
5∫u327+-1u3⋅173⋅u3-53⋅u3u3-1⋅-153173u3du
Step 4.21
Combine u3 and 17.
5∫u327+-1u⋅1733⋅u3-53⋅u3u3-1⋅-153173u3du
Step 4.22
Multiply -1u⋅1733 by u3.
5∫u327+-1u⋅173u3⋅3-53⋅u3u3-1⋅-153173u3du
Step 4.23
Combine u⋅173 and u.
5∫u327+-1u⋅17u33⋅3-53⋅u3u3-1⋅-153173u3du
Step 4.24
Multiply 3 by 3.
5∫u327+-1u⋅17u39-53⋅u3u3-1⋅-153173u3du
Step 4.25
Combine -53 and u3.
5∫u327+-1u⋅17u39-5u3⋅3⋅u3-1⋅-153173u3du
Step 4.26
Multiply 3 by 3.
5∫u327+-1u⋅17u39-5u9⋅u3-1⋅-153173u3du
Step 4.27
Combine -5u9 and u3.
5∫u327+-1u⋅17u39-5u⋅u9⋅3-1⋅-153173u3du
Step 4.28
Raise u to the power of 1.
5∫u327+-1u⋅17u39-5(u1u)9⋅3-1⋅-153173u3du
Step 4.29
Raise u to the power of 1.
5∫u327+-1u⋅17u39-5(u1u1)9⋅3-1⋅-153173u3du
Step 4.30
Use the power rule aman=am+n to combine exponents.
5∫u327+-1u⋅17u39-5u1+19⋅3-1⋅-153173u3du
Step 4.31
Add 1 and 1.
5∫u327+-1u⋅17u39-5u29⋅3-1⋅-153173u3du
Step 4.32
Multiply 9 by 3.
5∫u327+-1u⋅17u39-5u227-1⋅-153173u3du
Step 4.33
Multiply -1 by -1.
5∫u327+-1u⋅17u39-5u227+1(53)173u3du
Step 4.34
Multiply 53 by 1.
5∫u327+-1u⋅17u39-5u227+53⋅173u3du
Step 4.35
Multiply 53 by 173.
5∫u327+-1u⋅17u39-5u227+5⋅173⋅3⋅u3du
Step 4.36
Multiply 5 by 17.
5∫u327+-1u⋅17u39-5u227+853⋅3⋅u3du
Step 4.37
Multiply 3 by 3.
5∫u327+-1u⋅17u39-5u227+859⋅u3du
Step 4.38
Multiply 859 by u3.
5∫u327+-1u⋅17u39-5u227+85u9⋅3du
Step 4.39
Multiply 9 by 3.
5∫u327+-1u⋅17u39-5u227+85u27du
5∫u327+-1u⋅17u39-5u227+85u27du
Step 5
Step 5.1
Move 17 to the left of u.
5∫u327+-117⋅u⋅u39-5u227+85u27du
Step 5.2
Raise u to the power of 1.
5∫u327+-117(u1u)39-5u227+85u27du
Step 5.3
Raise u to the power of 1.
5∫u327+-117(u1u1)39-5u227+85u27du
Step 5.4
Use the power rule aman=am+n to combine exponents.
5∫u327+-117u1+139-5u227+85u27du
Step 5.5
Add 1 and 1.
5∫u327+-117u239-5u227+85u27du
Step 5.6
Rewrite -117u23 as -17u23.
5∫u327+-17u239-5u227+85u27du
Step 5.7
Rewrite -17u239 as a product.
5∫u327-17u23⋅19-5u227+85u27du
Step 5.8
Multiply 19 by 17u23.
5∫u327-17u29⋅3-5u227+85u27du
Step 5.9
Multiply 9 by 3.
5∫u327-17u227-5u227+85u27du
5∫u327-17u227-5u227+85u27du
Step 6
Split the single integral into multiple integrals.
5(∫u327du+∫-17u227du+∫-5u227du+∫85u27du)
Step 7
Since 127 is constant with respect to u, move 127 out of the integral.
5(127∫u3du+∫-17u227du+∫-5u227du+∫85u27du)
Step 8
By the Power Rule, the integral of u3 with respect to u is 14u4.
5(127(14u4+C)+∫-17u227du+∫-5u227du+∫85u27du)
Step 9
Combine 14 and u4.
5(127(u44+C)+∫-17u227du+∫-5u227du+∫85u27du)
Step 10
Since -1 is constant with respect to u, move -1 out of the integral.
5(127(u44+C)-∫17u227du+∫-5u227du+∫85u27du)
Step 11
Since 1727 is constant with respect to u, move 1727 out of the integral.
5(127(u44+C)-(1727∫u2du)+∫-5u227du+∫85u27du)
Step 12
By the Power Rule, the integral of u2 with respect to u is 13u3.
5(127(u44+C)-1727(13u3+C)+∫-5u227du+∫85u27du)
Step 13
Combine 13 and u3.
5(127(u44+C)-1727(u33+C)+∫-5u227du+∫85u27du)
Step 14
Since -1 is constant with respect to u, move -1 out of the integral.
5(127(u44+C)-1727(u33+C)-∫5u227du+∫85u27du)
Step 15
Since 527 is constant with respect to u, move 527 out of the integral.
5(127(u44+C)-1727(u33+C)-(527∫u2du)+∫85u27du)
Step 16
By the Power Rule, the integral of u2 with respect to u is 13u3.
5(127(u44+C)-1727(u33+C)-527(13u3+C)+∫85u27du)
Step 17
Combine 13 and u3.
5(127(u44+C)-1727(u33+C)-527(u33+C)+∫85u27du)
Step 18
Since 8527 is constant with respect to u, move 8527 out of the integral.
5(127(u44+C)-1727(u33+C)-527(u33+C)+8527∫udu)
Step 19
By the Power Rule, the integral of u with respect to u is 12u2.
5(127(u44+C)-1727(u33+C)-527(u33+C)+8527(12u2+C))
Step 20
Step 20.1
Combine 12 and u2.
5(127(u44+C)-1727(u33+C)-527(u33+C)+8527(u22+C))
Step 20.2
Simplify.
5(u4108-17u381-5u381+85u254)+C
Step 20.3
Simplify.
Step 20.3.1
Combine the numerators over the common denominator.
5(u4108+-17u3-5u381+85u254)+C
Step 20.3.2
Subtract 5u3 from -17u3.
5(u4108+-22u381+85u254)+C
Step 20.3.3
Move the negative in front of the fraction.
5(u4108-22u381+85u254)+C
5(u4108-22u381+85u254)+C
5(u4108-22u381+85u254)+C
Step 21
Replace all occurrences of u with 3x+5.
5((3x+5)4108-22(3x+5)381+85(3x+5)254)+C
Step 22
Reorder terms.
5(1108(3x+5)4-2281(3x+5)3+8554(3x+5)2)+C