Calculus Examples

Evaluate the Integral integral of 5x(x-4)(3x+5) with respect to x
5x(x-4)(3x+5)dx
Step 1
Since 5 is constant with respect to x, move 5 out of the integral.
5(x(x-4))(3x+5)dx
Step 2
Let u=3x+5. Then du=3dx, so 13du=dx. Rewrite using u and du.
Tap for more steps...
Step 2.1
Let u=3x+5. Find dudx.
Tap for more steps...
Step 2.1.1
Differentiate 3x+5.
ddx[3x+5]
Step 2.1.2
By the Sum Rule, the derivative of 3x+5 with respect to x is ddx[3x]+ddx[5].
ddx[3x]+ddx[5]
Step 2.1.3
Evaluate ddx[3x].
Tap for more steps...
Step 2.1.3.1
Since 3 is constant with respect to x, the derivative of 3x with respect to x is 3ddx[x].
3ddx[x]+ddx[5]
Step 2.1.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
31+ddx[5]
Step 2.1.3.3
Multiply 3 by 1.
3+ddx[5]
3+ddx[5]
Step 2.1.4
Differentiate using the Constant Rule.
Tap for more steps...
Step 2.1.4.1
Since 5 is constant with respect to x, the derivative of 5 with respect to x is 0.
3+0
Step 2.1.4.2
Add 3 and 0.
3
3
3
Step 2.2
Rewrite the problem using u and du.
5(u3-53)(u3-53-4)u13du
5(u3-53)(u3-53-4)u13du
Step 3
Simplify.
Tap for more steps...
Step 3.1
To write -4 as a fraction with a common denominator, multiply by 33.
5(u3-53)(u3-53-433)u13du
Step 3.2
Combine -4 and 33.
5(u3-53)(u3-53+-433)u13du
Step 3.3
Combine the numerators over the common denominator.
5(u3-53)(u3+-5-433)u13du
Step 3.4
Simplify the numerator.
Tap for more steps...
Step 3.4.1
Multiply -4 by 3.
5(u3-53)(u3+-5-123)u13du
Step 3.4.2
Subtract 12 from -5.
5(u3-53)(u3+-173)u13du
5(u3-53)(u3+-173)u13du
Step 3.5
Move the negative in front of the fraction.
5(u3-53)(u3-173)u13du
Step 3.6
Combine 13 and u.
5(u3-53)(u3-173)u3du
5(u3-53)(u3-173)u3du
Step 4
Simplify.
Tap for more steps...
Step 4.1
Apply the distributive property.
5(u3(u3-173)-53(u3-173))u3du
Step 4.2
Apply the distributive property.
5(u3u3+u3(-173)-53(u3-173))u3du
Step 4.3
Apply the distributive property.
5(u3u3+u3(-173)-53u3-53(-173))u3du
Step 4.4
Apply the distributive property.
5(u3u3+u3(-173))u3+(-53u3-53(-173))u3du
Step 4.5
Apply the distributive property.
5u3u3u3+u3(-173)u3+(-53u3-53(-173))u3du
Step 4.6
Apply the distributive property.
5u3u3u3+u3(-173)u3-53u3u3-53(-173)u3du
Step 4.7
Reorder u3 and -1.
5u3u3u3-1u3173u3-53u3u3-53(-173)u3du
Step 4.8
Move 53.
5u3u3u3-1u3173u3-53u3u3-1-153173u3du
Step 4.9
Multiply u3 by u3.
5uu33u3-1u3173u3-53u3u3-1-153173u3du
Step 4.10
Raise u to the power of 1.
5u1u33u3-1u3173u3-53u3u3-1-153173u3du
Step 4.11
Raise u to the power of 1.
5u1u133u3-1u3173u3-53u3u3-1-153173u3du
Step 4.12
Use the power rule aman=am+n to combine exponents.
5u1+133u3-1u3173u3-53u3u3-1-153173u3du
Step 4.13
Add 1 and 1.
5u233u3-1u3173u3-53u3u3-1-153173u3du
Step 4.14
Multiply 3 by 3.
5u29u3-1u3173u3-53u3u3-1-153173u3du
Step 4.15
Multiply u29 by u3.
5u2u93-1u3173u3-53u3u3-1-153173u3du
Step 4.16
Raise u to the power of 1.
5u2u193-1u3173u3-53u3u3-1-153173u3du
Step 4.17
Use the power rule aman=am+n to combine exponents.
5u2+193-1u3173u3-53u3u3-1-153173u3du
Step 4.18
Add 2 and 1.
5u393-1u3173u3-53u3u3-1-153173u3du
Step 4.19
Multiply 9 by 3.
5u327-1u3173u3-53u3u3-1-153173u3du
Step 4.20
Combine -1u3 and 173.
5u327+-1u3173u3-53u3u3-1-153173u3du
Step 4.21
Combine u3 and 17.
5u327+-1u1733u3-53u3u3-1-153173u3du
Step 4.22
Multiply -1u1733 by u3.
5u327+-1u173u33-53u3u3-1-153173u3du
Step 4.23
Combine u173 and u.
5u327+-1u17u333-53u3u3-1-153173u3du
Step 4.24
Multiply 3 by 3.
5u327+-1u17u39-53u3u3-1-153173u3du
Step 4.25
Combine -53 and u3.
5u327+-1u17u39-5u33u3-1-153173u3du
Step 4.26
Multiply 3 by 3.
5u327+-1u17u39-5u9u3-1-153173u3du
Step 4.27
Combine -5u9 and u3.
5u327+-1u17u39-5uu93-1-153173u3du
Step 4.28
Raise u to the power of 1.
5u327+-1u17u39-5(u1u)93-1-153173u3du
Step 4.29
Raise u to the power of 1.
5u327+-1u17u39-5(u1u1)93-1-153173u3du
Step 4.30
Use the power rule aman=am+n to combine exponents.
5u327+-1u17u39-5u1+193-1-153173u3du
Step 4.31
Add 1 and 1.
5u327+-1u17u39-5u293-1-153173u3du
Step 4.32
Multiply 9 by 3.
5u327+-1u17u39-5u227-1-153173u3du
Step 4.33
Multiply -1 by -1.
5u327+-1u17u39-5u227+1(53)173u3du
Step 4.34
Multiply 53 by 1.
5u327+-1u17u39-5u227+53173u3du
Step 4.35
Multiply 53 by 173.
5u327+-1u17u39-5u227+51733u3du
Step 4.36
Multiply 5 by 17.
5u327+-1u17u39-5u227+8533u3du
Step 4.37
Multiply 3 by 3.
5u327+-1u17u39-5u227+859u3du
Step 4.38
Multiply 859 by u3.
5u327+-1u17u39-5u227+85u93du
Step 4.39
Multiply 9 by 3.
5u327+-1u17u39-5u227+85u27du
5u327+-1u17u39-5u227+85u27du
Step 5
Simplify.
Tap for more steps...
Step 5.1
Move 17 to the left of u.
5u327+-117uu39-5u227+85u27du
Step 5.2
Raise u to the power of 1.
5u327+-117(u1u)39-5u227+85u27du
Step 5.3
Raise u to the power of 1.
5u327+-117(u1u1)39-5u227+85u27du
Step 5.4
Use the power rule aman=am+n to combine exponents.
5u327+-117u1+139-5u227+85u27du
Step 5.5
Add 1 and 1.
5u327+-117u239-5u227+85u27du
Step 5.6
Rewrite -117u23 as -17u23.
5u327+-17u239-5u227+85u27du
Step 5.7
Rewrite -17u239 as a product.
5u327-17u2319-5u227+85u27du
Step 5.8
Multiply 19 by 17u23.
5u327-17u293-5u227+85u27du
Step 5.9
Multiply 9 by 3.
5u327-17u227-5u227+85u27du
5u327-17u227-5u227+85u27du
Step 6
Split the single integral into multiple integrals.
5(u327du+-17u227du+-5u227du+85u27du)
Step 7
Since 127 is constant with respect to u, move 127 out of the integral.
5(127u3du+-17u227du+-5u227du+85u27du)
Step 8
By the Power Rule, the integral of u3 with respect to u is 14u4.
5(127(14u4+C)+-17u227du+-5u227du+85u27du)
Step 9
Combine 14 and u4.
5(127(u44+C)+-17u227du+-5u227du+85u27du)
Step 10
Since -1 is constant with respect to u, move -1 out of the integral.
5(127(u44+C)-17u227du+-5u227du+85u27du)
Step 11
Since 1727 is constant with respect to u, move 1727 out of the integral.
5(127(u44+C)-(1727u2du)+-5u227du+85u27du)
Step 12
By the Power Rule, the integral of u2 with respect to u is 13u3.
5(127(u44+C)-1727(13u3+C)+-5u227du+85u27du)
Step 13
Combine 13 and u3.
5(127(u44+C)-1727(u33+C)+-5u227du+85u27du)
Step 14
Since -1 is constant with respect to u, move -1 out of the integral.
5(127(u44+C)-1727(u33+C)-5u227du+85u27du)
Step 15
Since 527 is constant with respect to u, move 527 out of the integral.
5(127(u44+C)-1727(u33+C)-(527u2du)+85u27du)
Step 16
By the Power Rule, the integral of u2 with respect to u is 13u3.
5(127(u44+C)-1727(u33+C)-527(13u3+C)+85u27du)
Step 17
Combine 13 and u3.
5(127(u44+C)-1727(u33+C)-527(u33+C)+85u27du)
Step 18
Since 8527 is constant with respect to u, move 8527 out of the integral.
5(127(u44+C)-1727(u33+C)-527(u33+C)+8527udu)
Step 19
By the Power Rule, the integral of u with respect to u is 12u2.
5(127(u44+C)-1727(u33+C)-527(u33+C)+8527(12u2+C))
Step 20
Simplify.
Tap for more steps...
Step 20.1
Combine 12 and u2.
5(127(u44+C)-1727(u33+C)-527(u33+C)+8527(u22+C))
Step 20.2
Simplify.
5(u4108-17u381-5u381+85u254)+C
Step 20.3
Simplify.
Tap for more steps...
Step 20.3.1
Combine the numerators over the common denominator.
5(u4108+-17u3-5u381+85u254)+C
Step 20.3.2
Subtract 5u3 from -17u3.
5(u4108+-22u381+85u254)+C
Step 20.3.3
Move the negative in front of the fraction.
5(u4108-22u381+85u254)+C
5(u4108-22u381+85u254)+C
5(u4108-22u381+85u254)+C
Step 21
Replace all occurrences of u with 3x+5.
5((3x+5)4108-22(3x+5)381+85(3x+5)254)+C
Step 22
Reorder terms.
5(1108(3x+5)4-2281(3x+5)3+8554(3x+5)2)+C
 [x2  12  π  xdx ]