Enter a problem...
Calculus Examples
∫ππ25cos(x)dx∫ππ25cos(x)dx
Step 1
Since 55 is constant with respect to xx, move 55 out of the integral.
5∫ππ2cos(x)dx5∫ππ2cos(x)dx
Step 2
The integral of cos(x)cos(x) with respect to xx is sin(x)sin(x).
5(sin(x)]ππ2)5(sin(x)]ππ2)
Step 3
Step 3.1
Evaluate sin(x)sin(x) at ππ and at π2π2.
5(sin(π)-sin(π2))5(sin(π)−sin(π2))
Step 3.2
Simplify.
Step 3.2.1
The exact value of sin(π2)sin(π2) is 11.
5(sin(π)-1⋅1)5(sin(π)−1⋅1)
Step 3.2.2
Multiply -1−1 by 11.
5(sin(π)-1)5(sin(π)−1)
5(sin(π)-1)5(sin(π)−1)
Step 3.3
Simplify.
Step 3.3.1
Simplify each term.
Step 3.3.1.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
5(sin(0)-1)5(sin(0)−1)
Step 3.3.1.2
The exact value of sin(0)sin(0) is 00.
5(0-1)5(0−1)
5(0-1)5(0−1)
Step 3.3.2
Subtract 11 from 00.
5⋅-15⋅−1
Step 3.3.3
Multiply 55 by -1−1.
-5−5
-5−5
-5−5