Calculus Examples

Evaluate the Integral integral from pi/2 to pi of 5cos(x) with respect to x
ππ25cos(x)dxππ25cos(x)dx
Step 1
Since 55 is constant with respect to xx, move 55 out of the integral.
5ππ2cos(x)dx5ππ2cos(x)dx
Step 2
The integral of cos(x)cos(x) with respect to xx is sin(x)sin(x).
5(sin(x)]ππ2)5(sin(x)]ππ2)
Step 3
Simplify the answer.
Tap for more steps...
Step 3.1
Evaluate sin(x)sin(x) at ππ and at π2π2.
5(sin(π)-sin(π2))5(sin(π)sin(π2))
Step 3.2
Simplify.
Tap for more steps...
Step 3.2.1
The exact value of sin(π2)sin(π2) is 11.
5(sin(π)-11)5(sin(π)11)
Step 3.2.2
Multiply -11 by 11.
5(sin(π)-1)5(sin(π)1)
5(sin(π)-1)5(sin(π)1)
Step 3.3
Simplify.
Tap for more steps...
Step 3.3.1
Simplify each term.
Tap for more steps...
Step 3.3.1.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
5(sin(0)-1)5(sin(0)1)
Step 3.3.1.2
The exact value of sin(0)sin(0) is 00.
5(0-1)5(01)
5(0-1)5(01)
Step 3.3.2
Subtract 11 from 00.
5-151
Step 3.3.3
Multiply 55 by -11.
-55
-55
-55
 [x2  12  π  xdx ]  x2  12  π  xdx