Calculus Examples

Find dy/dx 0=-x^3+y^3-x^2
Step 1
Differentiate both sides of the equation.
Step 2
Since is constant with respect to , the derivative of with respect to is .
Step 3
Differentiate the right side of the equation.
Tap for more steps...
Step 3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2
Evaluate .
Tap for more steps...
Step 3.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.2
Differentiate using the Power Rule which states that is where .
Step 3.2.3
Multiply by .
Step 3.3
Evaluate .
Tap for more steps...
Step 3.3.1
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.3.1.1
To apply the Chain Rule, set as .
Step 3.3.1.2
Differentiate using the Power Rule which states that is where .
Step 3.3.1.3
Replace all occurrences of with .
Step 3.3.2
Rewrite as .
Step 3.4
Evaluate .
Tap for more steps...
Step 3.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.4.2
Differentiate using the Power Rule which states that is where .
Step 3.4.3
Multiply by .
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Solve for .
Tap for more steps...
Step 5.1
Rewrite the equation as .
Step 5.2
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 5.2.1
Add to both sides of the equation.
Step 5.2.2
Add to both sides of the equation.
Step 5.3
Divide each term in by and simplify.
Tap for more steps...
Step 5.3.1
Divide each term in by .
Step 5.3.2
Simplify the left side.
Tap for more steps...
Step 5.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 5.3.2.1.1
Cancel the common factor.
Step 5.3.2.1.2
Rewrite the expression.
Step 5.3.2.2
Cancel the common factor of .
Tap for more steps...
Step 5.3.2.2.1
Cancel the common factor.
Step 5.3.2.2.2
Divide by .
Step 5.3.3
Simplify the right side.
Tap for more steps...
Step 5.3.3.1
Cancel the common factor of .
Tap for more steps...
Step 5.3.3.1.1
Cancel the common factor.
Step 5.3.3.1.2
Rewrite the expression.
Step 6
Replace with .