Enter a problem...
Calculus Examples
Step 1
Step 1.1
Differentiate using the chain rule, which states that is where and .
Step 1.1.1
To apply the Chain Rule, set as .
Step 1.1.2
The derivative of with respect to is .
Step 1.1.3
Replace all occurrences of with .
Step 1.2
Differentiate.
Step 1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.4
Combine fractions.
Step 1.2.4.1
Add and .
Step 1.2.4.2
Combine and .
Step 1.2.4.3
Combine and .
Step 2
Step 2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
Differentiate using the Quotient Rule which states that is where and .
Step 2.3
Differentiate.
Step 2.3.1
Differentiate using the Power Rule which states that is where .
Step 2.3.2
Multiply by .
Step 2.3.3
By the Sum Rule, the derivative of with respect to is .
Step 2.3.4
Differentiate using the Power Rule which states that is where .
Step 2.3.5
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.6
Simplify the expression.
Step 2.3.6.1
Add and .
Step 2.3.6.2
Multiply by .
Step 2.4
Raise to the power of .
Step 2.5
Raise to the power of .
Step 2.6
Use the power rule to combine exponents.
Step 2.7
Add and .
Step 2.8
Subtract from .
Step 2.9
Combine and .
Step 2.10
Simplify.
Step 2.10.1
Apply the distributive property.
Step 2.10.2
Simplify each term.
Step 2.10.2.1
Multiply by .
Step 2.10.2.2
Multiply by .
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Since there is no value of that makes the first derivative equal to , there are no local extrema.
No Local Extrema
Step 5
No Local Extrema
Step 6