Calculus Examples

Find the Antiderivative 1/(2 square root of x+1)
Step 1
Write as a function.
Step 2
The function can be found by finding the indefinite integral of the derivative .
Step 3
Set up the integral to solve.
Step 4
Since is constant with respect to , move out of the integral.
Step 5
Let . Then . Rewrite using and .
Tap for more steps...
Step 5.1
Let . Find .
Tap for more steps...
Step 5.1.1
Differentiate .
Step 5.1.2
By the Sum Rule, the derivative of with respect to is .
Step 5.1.3
Differentiate using the Power Rule which states that is where .
Step 5.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 5.1.5
Add and .
Step 5.2
Rewrite the problem using and .
Step 6
Apply basic rules of exponents.
Tap for more steps...
Step 6.1
Use to rewrite as .
Step 6.2
Move out of the denominator by raising it to the power.
Step 6.3
Multiply the exponents in .
Tap for more steps...
Step 6.3.1
Apply the power rule and multiply exponents, .
Step 6.3.2
Combine and .
Step 6.3.3
Move the negative in front of the fraction.
Step 7
By the Power Rule, the integral of with respect to is .
Step 8
Simplify.
Tap for more steps...
Step 8.1
Rewrite as .
Step 8.2
Simplify.
Tap for more steps...
Step 8.2.1
Combine and .
Step 8.2.2
Cancel the common factor of .
Tap for more steps...
Step 8.2.2.1
Cancel the common factor.
Step 8.2.2.2
Rewrite the expression.
Step 8.2.3
Multiply by .
Step 9
Replace all occurrences of with .
Step 10
The answer is the antiderivative of the function .