Enter a problem...
Calculus Examples
x√x-1
Step 1
Step 1.1
Use n√ax=axn to rewrite √x-1 as (x-1)12.
ddx[x(x-1)12]
Step 1.2
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x and g(x)=(x-1)12.
xddx[(x-1)12]+(x-1)12ddx[x]
Step 1.3
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x12 and g(x)=x-1.
Step 1.3.1
To apply the Chain Rule, set u as x-1.
x(ddu[u12]ddx[x-1])+(x-1)12ddx[x]
Step 1.3.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=12.
x(12u12-1ddx[x-1])+(x-1)12ddx[x]
Step 1.3.3
Replace all occurrences of u with x-1.
x(12(x-1)12-1ddx[x-1])+(x-1)12ddx[x]
x(12(x-1)12-1ddx[x-1])+(x-1)12ddx[x]
Step 1.4
To write -1 as a fraction with a common denominator, multiply by 22.
x(12(x-1)12-1⋅22ddx[x-1])+(x-1)12ddx[x]
Step 1.5
Combine -1 and 22.
x(12(x-1)12+-1⋅22ddx[x-1])+(x-1)12ddx[x]
Step 1.6
Combine the numerators over the common denominator.
x(12(x-1)1-1⋅22ddx[x-1])+(x-1)12ddx[x]
Step 1.7
Simplify the numerator.
Step 1.7.1
Multiply -1 by 2.
x(12(x-1)1-22ddx[x-1])+(x-1)12ddx[x]
Step 1.7.2
Subtract 2 from 1.
x(12(x-1)-12ddx[x-1])+(x-1)12ddx[x]
x(12(x-1)-12ddx[x-1])+(x-1)12ddx[x]
Step 1.8
Combine fractions.
Step 1.8.1
Move the negative in front of the fraction.
x(12(x-1)-12ddx[x-1])+(x-1)12ddx[x]
Step 1.8.2
Combine 12 and (x-1)-12.
x((x-1)-122ddx[x-1])+(x-1)12ddx[x]
Step 1.8.3
Move (x-1)-12 to the denominator using the negative exponent rule b-n=1bn.
x(12(x-1)12ddx[x-1])+(x-1)12ddx[x]
Step 1.8.4
Combine 12(x-1)12 and x.
x2(x-1)12ddx[x-1]+(x-1)12ddx[x]
x2(x-1)12ddx[x-1]+(x-1)12ddx[x]
Step 1.9
By the Sum Rule, the derivative of x-1 with respect to x is ddx[x]+ddx[-1].
x2(x-1)12(ddx[x]+ddx[-1])+(x-1)12ddx[x]
Step 1.10
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
x2(x-1)12(1+ddx[-1])+(x-1)12ddx[x]
Step 1.11
Since -1 is constant with respect to x, the derivative of -1 with respect to x is 0.
x2(x-1)12(1+0)+(x-1)12ddx[x]
Step 1.12
Simplify the expression.
Step 1.12.1
Add 1 and 0.
x2(x-1)12⋅1+(x-1)12ddx[x]
Step 1.12.2
Multiply x2(x-1)12 by 1.
x2(x-1)12+(x-1)12ddx[x]
x2(x-1)12+(x-1)12ddx[x]
Step 1.13
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
x2(x-1)12+(x-1)12⋅1
Step 1.14
Multiply (x-1)12 by 1.
x2(x-1)12+(x-1)12
Step 1.15
To write (x-1)12 as a fraction with a common denominator, multiply by 2(x-1)122(x-1)12.
x2(x-1)12+(x-1)12⋅2(x-1)122(x-1)12
Step 1.16
Combine (x-1)12 and 2(x-1)122(x-1)12.
x2(x-1)12+(x-1)12(2(x-1)12)2(x-1)12
Step 1.17
Combine the numerators over the common denominator.
x+(x-1)12(2(x-1)12)2(x-1)12
Step 1.18
Multiply (x-1)12 by (x-1)12 by adding the exponents.
Step 1.18.1
Move (x-1)12.
x+(x-1)12(x-1)12⋅22(x-1)12
Step 1.18.2
Use the power rule aman=am+n to combine exponents.
x+(x-1)12+12⋅22(x-1)12
Step 1.18.3
Combine the numerators over the common denominator.
x+(x-1)1+12⋅22(x-1)12
Step 1.18.4
Add 1 and 1.
x+(x-1)22⋅22(x-1)12
Step 1.18.5
Divide 2 by 2.
x+(x-1)1⋅22(x-1)12
x+(x-1)1⋅22(x-1)12
Step 1.19
Simplify (x-1)1⋅2.
x+(x-1)⋅22(x-1)12
Step 1.20
Move 2 to the left of x-1.
x+2⋅(x-1)2(x-1)12
Step 1.21
Simplify.
Step 1.21.1
Apply the distributive property.
x+2x+2⋅-12(x-1)12
Step 1.21.2
Simplify the numerator.
Step 1.21.2.1
Multiply 2 by -1.
x+2x-22(x-1)12
Step 1.21.2.2
Add x and 2x.
f′(x)=3x-22(x-1)12
f′(x)=3x-22(x-1)12
f′(x)=3x-22(x-1)12
f′(x)=3x-22(x-1)12
Step 2
Step 2.1
Since 12 is constant with respect to x, the derivative of 3x-22(x-1)12 with respect to x is 12ddx[3x-2(x-1)12].
12ddx[3x-2(x-1)12]
Step 2.2
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2 where f(x)=3x-2 and g(x)=(x-1)12.
12⋅(x-1)12ddx[3x-2]-(3x-2)ddx[(x-1)12]((x-1)12)2
Step 2.3
Multiply the exponents in ((x-1)12)2.
Step 2.3.1
Apply the power rule and multiply exponents, (am)n=amn.
12⋅(x-1)12ddx[3x-2]-(3x-2)ddx[(x-1)12](x-1)12⋅2
Step 2.3.2
Cancel the common factor of 2.
Step 2.3.2.1
Cancel the common factor.
12⋅(x-1)12ddx[3x-2]-(3x-2)ddx[(x-1)12](x-1)12⋅2
Step 2.3.2.2
Rewrite the expression.
12⋅(x-1)12ddx[3x-2]-(3x-2)ddx[(x-1)12](x-1)1
12⋅(x-1)12ddx[3x-2]-(3x-2)ddx[(x-1)12](x-1)1
12⋅(x-1)12ddx[3x-2]-(3x-2)ddx[(x-1)12](x-1)1
Step 2.4
Simplify.
12⋅(x-1)12ddx[3x-2]-(3x-2)ddx[(x-1)12]x-1
Step 2.5
Differentiate.
Step 2.5.1
By the Sum Rule, the derivative of 3x-2 with respect to x is ddx[3x]+ddx[-2].
12⋅(x-1)12(ddx[3x]+ddx[-2])-(3x-2)ddx[(x-1)12]x-1
Step 2.5.2
Since 3 is constant with respect to x, the derivative of 3x with respect to x is 3ddx[x].
12⋅(x-1)12(3ddx[x]+ddx[-2])-(3x-2)ddx[(x-1)12]x-1
Step 2.5.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
12⋅(x-1)12(3⋅1+ddx[-2])-(3x-2)ddx[(x-1)12]x-1
Step 2.5.4
Multiply 3 by 1.
12⋅(x-1)12(3+ddx[-2])-(3x-2)ddx[(x-1)12]x-1
Step 2.5.5
Since -2 is constant with respect to x, the derivative of -2 with respect to x is 0.
12⋅(x-1)12(3+0)-(3x-2)ddx[(x-1)12]x-1
Step 2.5.6
Simplify the expression.
Step 2.5.6.1
Add 3 and 0.
12⋅(x-1)12⋅3-(3x-2)ddx[(x-1)12]x-1
Step 2.5.6.2
Move 3 to the left of (x-1)12.
12⋅3⋅(x-1)12-(3x-2)ddx[(x-1)12]x-1
12⋅3⋅(x-1)12-(3x-2)ddx[(x-1)12]x-1
12⋅3⋅(x-1)12-(3x-2)ddx[(x-1)12]x-1
Step 2.6
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x12 and g(x)=x-1.
Step 2.6.1
To apply the Chain Rule, set u1 as x-1.
12⋅3(x-1)12-(3x-2)(ddu1[u112]ddx[x-1])x-1
Step 2.6.2
Differentiate using the Power Rule which states that ddu1[u1n] is nu1n-1 where n=12.
12⋅3(x-1)12-(3x-2)(12u112-1ddx[x-1])x-1
Step 2.6.3
Replace all occurrences of u1 with x-1.
12⋅3(x-1)12-(3x-2)(12(x-1)12-1ddx[x-1])x-1
12⋅3(x-1)12-(3x-2)(12(x-1)12-1ddx[x-1])x-1
Step 2.7
To write -1 as a fraction with a common denominator, multiply by 22.
12⋅3(x-1)12-(3x-2)(12(x-1)12-1⋅22ddx[x-1])x-1
Step 2.8
Combine -1 and 22.
12⋅3(x-1)12-(3x-2)(12(x-1)12+-1⋅22ddx[x-1])x-1
Step 2.9
Combine the numerators over the common denominator.
12⋅3(x-1)12-(3x-2)(12(x-1)1-1⋅22ddx[x-1])x-1
Step 2.10
Simplify the numerator.
Step 2.10.1
Multiply -1 by 2.
12⋅3(x-1)12-(3x-2)(12(x-1)1-22ddx[x-1])x-1
Step 2.10.2
Subtract 2 from 1.
12⋅3(x-1)12-(3x-2)(12(x-1)-12ddx[x-1])x-1
12⋅3(x-1)12-(3x-2)(12(x-1)-12ddx[x-1])x-1
Step 2.11
Combine fractions.
Step 2.11.1
Move the negative in front of the fraction.
12⋅3(x-1)12-(3x-2)(12(x-1)-12ddx[x-1])x-1
Step 2.11.2
Combine 12 and (x-1)-12.
12⋅3(x-1)12-(3x-2)((x-1)-122ddx[x-1])x-1
Step 2.11.3
Move (x-1)-12 to the denominator using the negative exponent rule b-n=1bn.
12⋅3(x-1)12-(3x-2)(12(x-1)12ddx[x-1])x-1
12⋅3(x-1)12-(3x-2)(12(x-1)12ddx[x-1])x-1
Step 2.12
By the Sum Rule, the derivative of x-1 with respect to x is ddx[x]+ddx[-1].
12⋅3(x-1)12-(3x-2)(12(x-1)12(ddx[x]+ddx[-1]))x-1
Step 2.13
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
12⋅3(x-1)12-(3x-2)(12(x-1)12(1+ddx[-1]))x-1
Step 2.14
Since -1 is constant with respect to x, the derivative of -1 with respect to x is 0.
12⋅3(x-1)12-(3x-2)(12(x-1)12(1+0))x-1
Step 2.15
Combine fractions.
Step 2.15.1
Add 1 and 0.
12⋅3(x-1)12-(3x-2)(12(x-1)12⋅1)x-1
Step 2.15.2
Multiply 12(x-1)12 by 1.
12⋅3(x-1)12-(3x-2)12(x-1)12x-1
Step 2.15.3
Multiply 12 by 3(x-1)12-(3x-2)12(x-1)12x-1.
3(x-1)12-(3x-2)12(x-1)122(x-1)
3(x-1)12-(3x-2)12(x-1)122(x-1)
Step 2.16
Simplify.
Step 2.16.1
Apply the distributive property.
3(x-1)12+(-(3x)--2)12(x-1)122(x-1)
Step 2.16.2
Apply the distributive property.
3(x-1)12+(-(3x)--2)12(x-1)122x+2⋅-1
Step 2.16.3
Simplify the numerator.
Step 2.16.3.1
Add parentheses.
3(x-1)12+(-1⋅(3x)--2)12(x-1)122x+2⋅-1
Step 2.16.3.2
Let u2=(x-1)12. Substitute u2 for all occurrences of (x-1)12.
Step 2.16.3.2.1
Rewrite using the commutative property of multiplication.
3⋅2u2⋅u2-3x+22u22x+2⋅-1
Step 2.16.3.2.2
Multiply u2 by u2 by adding the exponents.
Step 2.16.3.2.2.1
Move u2.
3⋅2(u2⋅u2)-3x+22u22x+2⋅-1
Step 2.16.3.2.2.2
Multiply u2 by u2.
3⋅2u22-3x+22u22x+2⋅-1
3⋅2u22-3x+22u22x+2⋅-1
Step 2.16.3.2.3
Multiply 3 by 2.
6u22-3x+22u22x+2⋅-1
6u22-3x+22u22x+2⋅-1
Step 2.16.3.3
Replace all occurrences of u2 with (x-1)12.
6((x-1)12)2-3x+22(x-1)122x+2⋅-1
Step 2.16.3.4
Simplify.
Step 2.16.3.4.1
Simplify each term.
Step 2.16.3.4.1.1
Multiply the exponents in ((x-1)12)2.
Step 2.16.3.4.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
6(x-1)12⋅2-3x+22(x-1)122x+2⋅-1
Step 2.16.3.4.1.1.2
Cancel the common factor of 2.
Step 2.16.3.4.1.1.2.1
Cancel the common factor.
6(x-1)12⋅2-3x+22(x-1)122x+2⋅-1
Step 2.16.3.4.1.1.2.2
Rewrite the expression.
6(x-1)1-3x+22(x-1)122x+2⋅-1
6(x-1)1-3x+22(x-1)122x+2⋅-1
6(x-1)1-3x+22(x-1)122x+2⋅-1
Step 2.16.3.4.1.2
Simplify.
6(x-1)-3x+22(x-1)122x+2⋅-1
Step 2.16.3.4.1.3
Apply the distributive property.
6x+6⋅-1-3x+22(x-1)122x+2⋅-1
Step 2.16.3.4.1.4
Multiply 6 by -1.
6x-6-3x+22(x-1)122x+2⋅-1
6x-6-3x+22(x-1)122x+2⋅-1
Step 2.16.3.4.2
Subtract 3x from 6x.
3x-6+22(x-1)122x+2⋅-1
Step 2.16.3.4.3
Add -6 and 2.
3x-42(x-1)122x+2⋅-1
3x-42(x-1)122x+2⋅-1
3x-42(x-1)122x+2⋅-1
Step 2.16.4
Combine terms.
Step 2.16.4.1
Multiply 2 by -1.
3x-42(x-1)122x-2
Step 2.16.4.2
Rewrite 3x-42(x-1)122x-2 as a product.
3x-42(x-1)12⋅12x-2
Step 2.16.4.3
Multiply 3x-42(x-1)12 by 12x-2.
3x-42(x-1)12(2x-2)
3x-42(x-1)12(2x-2)
Step 2.16.5
Simplify the denominator.
Step 2.16.5.1
Factor 2 out of 2x-2.
Step 2.16.5.1.1
Factor 2 out of 2x.
3x-42(x-1)12(2(x)-2)
Step 2.16.5.1.2
Factor 2 out of -2.
3x-42(x-1)12(2(x)+2(-1))
Step 2.16.5.1.3
Factor 2 out of 2(x)+2(-1).
3x-42(x-1)12(2(x-1))
3x-42(x-1)12⋅2(x-1)
Step 2.16.5.2
Combine exponents.
Step 2.16.5.2.1
Multiply 2 by 2.
3x-44(x-1)12(x-1)
Step 2.16.5.2.2
Raise x-1 to the power of 1.
3x-44((x-1)1(x-1)12)
Step 2.16.5.2.3
Use the power rule aman=am+n to combine exponents.
3x-44(x-1)1+12
Step 2.16.5.2.4
Write 1 as a fraction with a common denominator.
3x-44(x-1)22+12
Step 2.16.5.2.5
Combine the numerators over the common denominator.
3x-44(x-1)2+12
Step 2.16.5.2.6
Add 2 and 1.
f′′(x)=3x-44(x-1)32
f′′(x)=3x-44(x-1)32
f′′(x)=3x-44(x-1)32
f′′(x)=3x-44(x-1)32
f′′(x)=3x-44(x-1)32
Step 3
Step 3.1
Since 14 is constant with respect to x, the derivative of 3x-44(x-1)32 with respect to x is 14ddx[3x-4(x-1)32].
14ddx[3x-4(x-1)32]
Step 3.2
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2 where f(x)=3x-4 and g(x)=(x-1)32.
14⋅(x-1)32ddx[3x-4]-(3x-4)ddx[(x-1)32]((x-1)32)2
Step 3.3
Differentiate.
Step 3.3.1
Multiply the exponents in ((x-1)32)2.
Step 3.3.1.1
Apply the power rule and multiply exponents, (am)n=amn.
14⋅(x-1)32ddx[3x-4]-(3x-4)ddx[(x-1)32](x-1)32⋅2
Step 3.3.1.2
Cancel the common factor of 2.
Step 3.3.1.2.1
Cancel the common factor.
14⋅(x-1)32ddx[3x-4]-(3x-4)ddx[(x-1)32](x-1)32⋅2
Step 3.3.1.2.2
Rewrite the expression.
14⋅(x-1)32ddx[3x-4]-(3x-4)ddx[(x-1)32](x-1)3
14⋅(x-1)32ddx[3x-4]-(3x-4)ddx[(x-1)32](x-1)3
14⋅(x-1)32ddx[3x-4]-(3x-4)ddx[(x-1)32](x-1)3
Step 3.3.2
By the Sum Rule, the derivative of 3x-4 with respect to x is ddx[3x]+ddx[-4].
14⋅(x-1)32(ddx[3x]+ddx[-4])-(3x-4)ddx[(x-1)32](x-1)3
Step 3.3.3
Since 3 is constant with respect to x, the derivative of 3x with respect to x is 3ddx[x].
14⋅(x-1)32(3ddx[x]+ddx[-4])-(3x-4)ddx[(x-1)32](x-1)3
Step 3.3.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
14⋅(x-1)32(3⋅1+ddx[-4])-(3x-4)ddx[(x-1)32](x-1)3
Step 3.3.5
Multiply 3 by 1.
14⋅(x-1)32(3+ddx[-4])-(3x-4)ddx[(x-1)32](x-1)3
Step 3.3.6
Since -4 is constant with respect to x, the derivative of -4 with respect to x is 0.
14⋅(x-1)32(3+0)-(3x-4)ddx[(x-1)32](x-1)3
Step 3.3.7
Simplify the expression.
Step 3.3.7.1
Add 3 and 0.
14⋅(x-1)32⋅3-(3x-4)ddx[(x-1)32](x-1)3
Step 3.3.7.2
Move 3 to the left of (x-1)32.
14⋅3⋅(x-1)32-(3x-4)ddx[(x-1)32](x-1)3
14⋅3⋅(x-1)32-(3x-4)ddx[(x-1)32](x-1)3
14⋅3⋅(x-1)32-(3x-4)ddx[(x-1)32](x-1)3
Step 3.4
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x32 and g(x)=x-1.
Step 3.4.1
To apply the Chain Rule, set u as x-1.
14⋅3(x-1)32-(3x-4)(ddu[u32]ddx[x-1])(x-1)3
Step 3.4.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=32.
14⋅3(x-1)32-(3x-4)(32u32-1ddx[x-1])(x-1)3
Step 3.4.3
Replace all occurrences of u with x-1.
14⋅3(x-1)32-(3x-4)(32(x-1)32-1ddx[x-1])(x-1)3
14⋅3(x-1)32-(3x-4)(32(x-1)32-1ddx[x-1])(x-1)3
Step 3.5
To write -1 as a fraction with a common denominator, multiply by 22.
14⋅3(x-1)32-(3x-4)(32(x-1)32-1⋅22ddx[x-1])(x-1)3
Step 3.6
Combine -1 and 22.
14⋅3(x-1)32-(3x-4)(32(x-1)32+-1⋅22ddx[x-1])(x-1)3
Step 3.7
Combine the numerators over the common denominator.
14⋅3(x-1)32-(3x-4)(32(x-1)3-1⋅22ddx[x-1])(x-1)3
Step 3.8
Simplify the numerator.
Step 3.8.1
Multiply -1 by 2.
14⋅3(x-1)32-(3x-4)(32(x-1)3-22ddx[x-1])(x-1)3
Step 3.8.2
Subtract 2 from 3.
14⋅3(x-1)32-(3x-4)(32(x-1)12ddx[x-1])(x-1)3
14⋅3(x-1)32-(3x-4)(32(x-1)12ddx[x-1])(x-1)3
Step 3.9
Combine 32 and (x-1)12.
14⋅3(x-1)32-(3x-4)(3(x-1)122ddx[x-1])(x-1)3
Step 3.10
By the Sum Rule, the derivative of x-1 with respect to x is ddx[x]+ddx[-1].
14⋅3(x-1)32-(3x-4)(3(x-1)122(ddx[x]+ddx[-1]))(x-1)3
Step 3.11
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
14⋅3(x-1)32-(3x-4)(3(x-1)122(1+ddx[-1]))(x-1)3
Step 3.12
Since -1 is constant with respect to x, the derivative of -1 with respect to x is 0.
14⋅3(x-1)32-(3x-4)(3(x-1)122(1+0))(x-1)3
Step 3.13
Combine fractions.
Step 3.13.1
Add 1 and 0.
14⋅3(x-1)32-(3x-4)(3(x-1)122⋅1)(x-1)3
Step 3.13.2
Multiply 3(x-1)122 by 1.
14⋅3(x-1)32-(3x-4)3(x-1)122(x-1)3
Step 3.13.3
Multiply 14 by 3(x-1)32-(3x-4)3(x-1)122(x-1)3.
3(x-1)32-(3x-4)3(x-1)1224(x-1)3
3(x-1)32-(3x-4)3(x-1)1224(x-1)3
Step 3.14
Simplify.
Step 3.14.1
Apply the distributive property.
3(x-1)32+(-(3x)--4)3(x-1)1224(x-1)3
Step 3.14.2
Simplify the numerator.
Step 3.14.2.1
Simplify each term.
Step 3.14.2.1.1
Multiply 3 by -1.
3(x-1)32+(-3x--4)3(x-1)1224(x-1)3
Step 3.14.2.1.2
Multiply -1 by -4.
3(x-1)32+(-3x+4)3(x-1)1224(x-1)3
3(x-1)32+(-3x+4)3(x-1)1224(x-1)3
Step 3.14.2.2
Apply the distributive property.
3(x-1)32-3x3(x-1)122+43(x-1)1224(x-1)3
Step 3.14.2.3
Multiply -3x3(x-1)122.
Step 3.14.2.3.1
Combine -3 and 3(x-1)122.
3(x-1)32+x-3(3(x-1)12)2+43(x-1)1224(x-1)3
Step 3.14.2.3.2
Multiply 3 by -3.
3(x-1)32+x-9(x-1)122+43(x-1)1224(x-1)3
Step 3.14.2.3.3
Combine x and -9(x-1)122.
3(x-1)32+x(-9(x-1)12)2+43(x-1)1224(x-1)3
3(x-1)32+x(-9(x-1)12)2+43(x-1)1224(x-1)3
Step 3.14.2.4
Cancel the common factor of 2.
Step 3.14.2.4.1
Factor 2 out of 4.
3(x-1)32+x(-9(x-1)12)2+2(2)3(x-1)1224(x-1)3
Step 3.14.2.4.2
Cancel the common factor.
3(x-1)32+x(-9(x-1)12)2+2⋅23(x-1)1224(x-1)3
Step 3.14.2.4.3
Rewrite the expression.
3(x-1)32+x(-9(x-1)12)2+2(3(x-1)12)4(x-1)3
3(x-1)32+x(-9(x-1)12)2+2(3(x-1)12)4(x-1)3
Step 3.14.2.5
Multiply 3 by 2.
3(x-1)32+x(-9(x-1)12)2+6(x-1)124(x-1)3
Step 3.14.2.6
Simplify each term.
Step 3.14.2.6.1
Simplify the numerator.
Step 3.14.2.6.1.1
Rewrite.
3(x-1)32+x(-9(x-1)12)2+6(x-1)124(x-1)3
Step 3.14.2.6.1.2
Remove unnecessary parentheses.
3(x-1)32+x⋅-9(x-1)122+6(x-1)124(x-1)3
3(x-1)32+x⋅-9(x-1)122+6(x-1)124(x-1)3
Step 3.14.2.6.2
Move -9 to the left of x.
3(x-1)32+-9⋅x(x-1)122+6(x-1)124(x-1)3
Step 3.14.2.6.3
Move the negative in front of the fraction.
3(x-1)32-9x(x-1)122+6(x-1)124(x-1)3
3(x-1)32-9x(x-1)122+6(x-1)124(x-1)3
Step 3.14.2.7
To write 6(x-1)12 as a fraction with a common denominator, multiply by 22.
3(x-1)32-9x(x-1)122+6(x-1)12⋅224(x-1)3
Step 3.14.2.8
Combine 6(x-1)12 and 22.
3(x-1)32-9x(x-1)122+6(x-1)12⋅224(x-1)3
Step 3.14.2.9
Combine the numerators over the common denominator.
3(x-1)32+-9x(x-1)12+6(x-1)12⋅224(x-1)3
Step 3.14.2.10
Simplify the numerator.
Step 3.14.2.10.1
Factor 3(x-1)12 out of -9x(x-1)12+6(x-1)12⋅2.
Step 3.14.2.10.1.1
Move (x-1)12.
3(x-1)32+-9x(x-1)12+6⋅2(x-1)1224(x-1)3
Step 3.14.2.10.1.2
Factor 3(x-1)12 out of -9x(x-1)12.
3(x-1)32+3(x-1)12(-3x)+6⋅2(x-1)1224(x-1)3
Step 3.14.2.10.1.3
Factor 3(x-1)12 out of 6⋅2(x-1)12.
3(x-1)32+3(x-1)12(-3x)+3(x-1)12(2⋅2)24(x-1)3
Step 3.14.2.10.1.4
Factor 3(x-1)12 out of 3(x-1)12(-3x)+3(x-1)12(2⋅2).
3(x-1)32+3(x-1)12(-3x+2⋅2)24(x-1)3
3(x-1)32+3(x-1)12(-3x+2⋅2)24(x-1)3
Step 3.14.2.10.2
Multiply 2 by 2.
3(x-1)32+3(x-1)12(-3x+4)24(x-1)3
3(x-1)32+3(x-1)12(-3x+4)24(x-1)3
Step 3.14.2.11
To write 3(x-1)32 as a fraction with a common denominator, multiply by 22.
3(x-1)32⋅22+3(x-1)12(-3x+4)24(x-1)3
Step 3.14.2.12
Combine 3(x-1)32 and 22.
3(x-1)32⋅22+3(x-1)12(-3x+4)24(x-1)3
Step 3.14.2.13
Combine the numerators over the common denominator.
3(x-1)32⋅2+3(x-1)12(-3x+4)24(x-1)3
Step 3.14.2.14
Rewrite 3(x-1)32⋅2+3(x-1)12(-3x+4)2 in a factored form.
Step 3.14.2.14.1
Factor 3(x-1)12 out of 3(x-1)32⋅2+3(x-1)12(-3x+4).
Step 3.14.2.14.1.1
Move (x-1)32.
3⋅2(x-1)32+3(x-1)12(-3x+4)24(x-1)3
Step 3.14.2.14.1.2
Factor 3(x-1)12 out of 3⋅2(x-1)32.
3(x-1)12(2(x-1)22)+3(x-1)12(-3x+4)24(x-1)3
Step 3.14.2.14.1.3
Factor 3(x-1)12 out of 3(x-1)12(2(x-1)22)+3(x-1)12(-3x+4).
3(x-1)12(2(x-1)22-3x+4)24(x-1)3
3(x-1)12(2(x-1)22-3x+4)24(x-1)3
Step 3.14.2.14.2
Divide 2 by 2.
3(x-1)12(2(x-1)1-3x+4)24(x-1)3
Step 3.14.2.14.3
Simplify.
3(x-1)12(2(x-1)-3x+4)24(x-1)3
Step 3.14.2.14.4
Apply the distributive property.
3(x-1)12(2x+2⋅-1-3x+4)24(x-1)3
Step 3.14.2.14.5
Multiply 2 by -1.
3(x-1)12(2x-2-3x+4)24(x-1)3
Step 3.14.2.14.6
Subtract 3x from 2x.
3(x-1)12(-x-2+4)24(x-1)3
Step 3.14.2.14.7
Add -2 and 4.
3(x-1)12(-x+2)24(x-1)3
3(x-1)12(-x+2)24(x-1)3
3(x-1)12(-x+2)24(x-1)3
Step 3.14.3
Combine terms.
Step 3.14.3.1
Rewrite 3(x-1)12(-x+2)24(x-1)3 as a product.
3(x-1)12(-x+2)2⋅14(x-1)3
Step 3.14.3.2
Multiply 3(x-1)12(-x+2)2 by 14(x-1)3.
3(x-1)12(-x+2)2(4(x-1)3)
Step 3.14.3.3
Multiply 4 by 2.
3(x-1)12(-x+2)8(x-1)3
Step 3.14.3.4
Move (x-1)12 to the denominator using the negative exponent rule bn=1b-n.
3(-x+2)8(x-1)3(x-1)-12
Step 3.14.3.5
Multiply (x-1)3 by (x-1)-12 by adding the exponents.
Step 3.14.3.5.1
Move (x-1)-12.
3(-x+2)8((x-1)-12(x-1)3)
Step 3.14.3.5.2
Use the power rule aman=am+n to combine exponents.
3(-x+2)8(x-1)-12+3
Step 3.14.3.5.3
To write 3 as a fraction with a common denominator, multiply by 22.
3(-x+2)8(x-1)-12+3⋅22
Step 3.14.3.5.4
Combine 3 and 22.
3(-x+2)8(x-1)-12+3⋅22
Step 3.14.3.5.5
Combine the numerators over the common denominator.
3(-x+2)8(x-1)-1+3⋅22
Step 3.14.3.5.6
Simplify the numerator.
Step 3.14.3.5.6.1
Multiply 3 by 2.
3(-x+2)8(x-1)-1+62
Step 3.14.3.5.6.2
Add -1 and 6.
3(-x+2)8(x-1)52
3(-x+2)8(x-1)52
3(-x+2)8(x-1)52
3(-x+2)8(x-1)52
Step 3.14.4
Factor -1 out of -x.
3(-(x)+2)8(x-1)52
Step 3.14.5
Rewrite 2 as -1(-2).
3(-(x)-1(-2))8(x-1)52
Step 3.14.6
Factor -1 out of -(x)-1(-2).
3(-(x-2))8(x-1)52
Step 3.14.7
Rewrite -(x-2) as -1(x-2).
3(-1(x-2))8(x-1)52
Step 3.14.8
Move the negative in front of the fraction.
f′′′(x)=-3(x-2)8(x-1)52
f′′′(x)=-3(x-2)8(x-1)52
f′′′(x)=-3(x-2)8(x-1)52