Enter a problem...
Calculus Examples
Step 1
Step 1.1
Take the limit of the numerator and the limit of the denominator.
Step 1.2
Evaluate the limit of the numerator.
Step 1.2.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 1.2.2
Move the term outside of the limit because it is constant with respect to .
Step 1.2.3
Move the limit inside the trig function because cosine is continuous.
Step 1.2.4
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 1.2.5
Evaluate the limit of which is constant as approaches .
Step 1.2.6
Move the term outside of the limit because it is constant with respect to .
Step 1.2.7
Evaluate the limits by plugging in for all occurrences of .
Step 1.2.7.1
Evaluate the limit of by plugging in for .
Step 1.2.7.2
Evaluate the limit of by plugging in for .
Step 1.2.8
Simplify the answer.
Step 1.2.8.1
Simplify each term.
Step 1.2.8.1.1
Multiply .
Step 1.2.8.1.1.1
Multiply by .
Step 1.2.8.1.1.2
Multiply by .
Step 1.2.8.1.2
Subtract from .
Step 1.2.8.1.3
The exact value of is .
Step 1.2.8.1.4
Multiply by .
Step 1.2.8.2
Subtract from .
Step 1.3
Evaluate the limit of the denominator.
Step 1.3.1
Evaluate the limit.
Step 1.3.1.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 1.3.1.2
Move the exponent from outside the limit using the Limits Power Rule.
Step 1.3.1.3
Evaluate the limit of which is constant as approaches .
Step 1.3.2
Evaluate the limit of by plugging in for .
Step 1.3.3
Simplify the answer.
Step 1.3.3.1
Simplify each term.
Step 1.3.3.1.1
Raise to the power of .
Step 1.3.3.1.2
Multiply by .
Step 1.3.3.2
Subtract from .
Step 1.3.3.3
The expression contains a division by . The expression is undefined.
Undefined
Step 1.3.4
The expression contains a division by . The expression is undefined.
Undefined
Step 1.4
The expression contains a division by . The expression is undefined.
Undefined
Step 2
Since is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
Step 3
Step 3.1
Differentiate the numerator and denominator.
Step 3.2
By the Sum Rule, the derivative of with respect to is .
Step 3.3
Evaluate .
Step 3.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.2
Differentiate using the chain rule, which states that is where and .
Step 3.3.2.1
To apply the Chain Rule, set as .
Step 3.3.2.2
The derivative of with respect to is .
Step 3.3.2.3
Replace all occurrences of with .
Step 3.3.3
By the Sum Rule, the derivative of with respect to is .
Step 3.3.4
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.5
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.6
Differentiate using the Power Rule which states that is where .
Step 3.3.7
Multiply by .
Step 3.3.8
Subtract from .
Step 3.3.9
Multiply by .
Step 3.3.10
Multiply by .
Step 3.4
Evaluate .
Step 3.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.4.2
Differentiate using the Power Rule which states that is where .
Step 3.4.3
Multiply by .
Step 3.5
Reorder terms.
Step 3.6
By the Sum Rule, the derivative of with respect to is .
Step 3.7
Differentiate using the Power Rule which states that is where .
Step 3.8
Since is constant with respect to , the derivative of with respect to is .
Step 3.9
Add and .
Step 4
Move the term outside of the limit because it is constant with respect to .
Step 5
Split the limit using the Limits Quotient Rule on the limit as approaches .
Step 6
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 7
Evaluate the limit of which is constant as approaches .
Step 8
Move the term outside of the limit because it is constant with respect to .
Step 9
Move the limit inside the trig function because sine is continuous.
Step 10
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 11
Evaluate the limit of which is constant as approaches .
Step 12
Move the term outside of the limit because it is constant with respect to .
Step 13
Step 13.1
Evaluate the limit of by plugging in for .
Step 13.2
Evaluate the limit of by plugging in for .
Step 14
Step 14.1
Simplify the numerator.
Step 14.1.1
Multiply .
Step 14.1.1.1
Multiply by .
Step 14.1.1.2
Multiply by .
Step 14.1.2
Subtract from .
Step 14.1.3
The exact value of is .
Step 14.1.4
Multiply by .
Step 14.1.5
Add and .
Step 14.2
Move the negative in front of the fraction.
Step 14.3
Multiply .
Step 14.3.1
Multiply by .
Step 14.3.2
Multiply by .