Calculus Examples

Evaluate the Limit limit as x approaches infinity of (1+1/x)^(4x+7)
Step 1
Combine terms.
Tap for more steps...
Step 1.1
Write as a fraction with a common denominator.
Step 1.2
Combine the numerators over the common denominator.
Step 2
Use the properties of logarithms to simplify the limit.
Tap for more steps...
Step 2.1
Rewrite as .
Step 2.2
Expand by moving outside the logarithm.
Step 3
Move the limit into the exponent.
Step 4
Rewrite as .
Step 5
Apply L'Hospital's rule.
Tap for more steps...
Step 5.1
Evaluate the limit of the numerator and the limit of the denominator.
Tap for more steps...
Step 5.1.1
Take the limit of the numerator and the limit of the denominator.
Step 5.1.2
Evaluate the limit of the numerator.
Tap for more steps...
Step 5.1.2.1
Move the limit inside the logarithm.
Step 5.1.2.2
Divide the numerator and denominator by the highest power of in the denominator, which is .
Step 5.1.2.3
Evaluate the limit.
Tap for more steps...
Step 5.1.2.3.1
Cancel the common factor of .
Tap for more steps...
Step 5.1.2.3.1.1
Cancel the common factor.
Step 5.1.2.3.1.2
Rewrite the expression.
Step 5.1.2.3.2
Cancel the common factor of .
Tap for more steps...
Step 5.1.2.3.2.1
Cancel the common factor.
Step 5.1.2.3.2.2
Rewrite the expression.
Step 5.1.2.3.3
Split the limit using the Limits Quotient Rule on the limit as approaches .
Step 5.1.2.3.4
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 5.1.2.3.5
Evaluate the limit of which is constant as approaches .
Step 5.1.2.4
Since its numerator approaches a real number while its denominator is unbounded, the fraction approaches .
Step 5.1.2.5
Evaluate the limit.
Tap for more steps...
Step 5.1.2.5.1
Evaluate the limit of which is constant as approaches .
Step 5.1.2.5.2
Simplify the answer.
Tap for more steps...
Step 5.1.2.5.2.1
Divide by .
Step 5.1.2.5.2.2
Add and .
Step 5.1.2.5.2.3
The natural logarithm of is .
Step 5.1.3
Since its numerator approaches a real number while its denominator is unbounded, the fraction approaches .
Step 5.1.4
The expression contains a division by . The expression is undefined.
Undefined
Step 5.2
Since is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
Step 5.3
Find the derivative of the numerator and denominator.
Tap for more steps...
Step 5.3.1
Differentiate the numerator and denominator.
Step 5.3.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 5.3.2.1
To apply the Chain Rule, set as .
Step 5.3.2.2
The derivative of with respect to is .
Step 5.3.2.3
Replace all occurrences of with .
Step 5.3.3
Multiply by the reciprocal of the fraction to divide by .
Step 5.3.4
Multiply by .
Step 5.3.5
Differentiate using the Quotient Rule which states that is where and .
Step 5.3.6
By the Sum Rule, the derivative of with respect to is .
Step 5.3.7
Differentiate using the Power Rule which states that is where .
Step 5.3.8
Since is constant with respect to , the derivative of with respect to is .
Step 5.3.9
Add and .
Step 5.3.10
Multiply by .
Step 5.3.11
Differentiate using the Power Rule which states that is where .
Step 5.3.12
Multiply by .
Step 5.3.13
Multiply by .
Step 5.3.14
Cancel the common factors.
Tap for more steps...
Step 5.3.14.1
Factor out of .
Step 5.3.14.2
Cancel the common factor.
Step 5.3.14.3
Rewrite the expression.
Step 5.3.15
Simplify.
Tap for more steps...
Step 5.3.15.1
Apply the distributive property.
Step 5.3.15.2
Apply the distributive property.
Step 5.3.15.3
Simplify the numerator.
Tap for more steps...
Step 5.3.15.3.1
Subtract from .
Step 5.3.15.3.2
Subtract from .
Step 5.3.15.3.3
Multiply by .
Step 5.3.15.4
Combine terms.
Tap for more steps...
Step 5.3.15.4.1
Raise to the power of .
Step 5.3.15.4.2
Raise to the power of .
Step 5.3.15.4.3
Use the power rule to combine exponents.
Step 5.3.15.4.4
Add and .
Step 5.3.15.4.5
Multiply by .
Step 5.3.15.4.6
Move the negative in front of the fraction.
Step 5.3.15.5
Factor out of .
Tap for more steps...
Step 5.3.15.5.1
Factor out of .
Step 5.3.15.5.2
Raise to the power of .
Step 5.3.15.5.3
Factor out of .
Step 5.3.15.5.4
Factor out of .
Step 5.3.16
Rewrite as .
Step 5.3.17
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 5.3.17.1
To apply the Chain Rule, set as .
Step 5.3.17.2
Differentiate using the Power Rule which states that is where .
Step 5.3.17.3
Replace all occurrences of with .
Step 5.3.18
By the Sum Rule, the derivative of with respect to is .
Step 5.3.19
Since is constant with respect to , the derivative of with respect to is .
Step 5.3.20
Differentiate using the Power Rule which states that is where .
Step 5.3.21
Multiply by .
Step 5.3.22
Since is constant with respect to , the derivative of with respect to is .
Step 5.3.23
Add and .
Step 5.3.24
Multiply by .
Step 5.3.25
Simplify.
Tap for more steps...
Step 5.3.25.1
Rewrite the expression using the negative exponent rule .
Step 5.3.25.2
Combine terms.
Tap for more steps...
Step 5.3.25.2.1
Combine and .
Step 5.3.25.2.2
Move the negative in front of the fraction.
Step 5.4
Multiply the numerator by the reciprocal of the denominator.
Step 5.5
Combine factors.
Tap for more steps...
Step 5.5.1
Multiply by .
Step 5.5.2
Multiply by .
Step 5.5.3
Multiply by .
Step 5.6
Move to the left of .
Step 6
Move the term outside of the limit because it is constant with respect to .
Step 7
Simplify.
Tap for more steps...
Step 7.1
Apply the distributive property.
Step 7.2
Multiply by .
Step 7.3
Multiply by .
Step 8
Divide the numerator and denominator by the highest power of in the denominator.
Step 9
Evaluate the limit.
Tap for more steps...
Step 9.1
Simplify each term.
Step 9.2
Split the limit using the Limits Quotient Rule on the limit as approaches .
Step 9.3
Move the exponent from outside the limit using the Limits Power Rule.
Step 9.4
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 9.5
Move the term outside of the limit because it is constant with respect to .
Step 9.6
Cancel the common factor of .
Tap for more steps...
Step 9.6.1
Cancel the common factor.
Step 9.6.2
Rewrite the expression.
Step 9.7
Evaluate the limit of which is constant as approaches .
Step 9.8
Move the term outside of the limit because it is constant with respect to .
Step 10
Since its numerator approaches a real number while its denominator is unbounded, the fraction approaches .
Step 11
Evaluate the limit.
Tap for more steps...
Step 11.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 11.2
Evaluate the limit of which is constant as approaches .
Step 12
Since its numerator approaches a real number while its denominator is unbounded, the fraction approaches .
Step 13
Simplify the answer.
Tap for more steps...
Step 13.1
Simplify the numerator.
Tap for more steps...
Step 13.1.1
Multiply by .
Step 13.1.2
Multiply by .
Step 13.1.3
Add and .
Step 13.1.4
Raise to the power of .
Step 13.2
Add and .
Step 13.3
Cancel the common factor of .
Tap for more steps...
Step 13.3.1
Factor out of .
Step 13.3.2
Cancel the common factor.
Step 13.3.3
Rewrite the expression.
Step 14
The result can be shown in multiple forms.
Exact Form:
Decimal Form: