Calculus Examples

Find the Inflection Points 1/4x^4+5x^3+75/2x^2
Step 1
Write as a function.
Step 2
Find the second derivative.
Tap for more steps...
Step 2.1
Find the first derivative.
Tap for more steps...
Step 2.1.1
By the Sum Rule, the derivative of with respect to is .
Step 2.1.2
Evaluate .
Tap for more steps...
Step 2.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.2.2
Differentiate using the Power Rule which states that is where .
Step 2.1.2.3
Combine and .
Step 2.1.2.4
Combine and .
Step 2.1.2.5
Cancel the common factor of .
Tap for more steps...
Step 2.1.2.5.1
Cancel the common factor.
Step 2.1.2.5.2
Divide by .
Step 2.1.3
Evaluate .
Tap for more steps...
Step 2.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.3.2
Differentiate using the Power Rule which states that is where .
Step 2.1.3.3
Multiply by .
Step 2.1.4
Evaluate .
Tap for more steps...
Step 2.1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.4.2
Differentiate using the Power Rule which states that is where .
Step 2.1.4.3
Combine and .
Step 2.1.4.4
Multiply by .
Step 2.1.4.5
Combine and .
Step 2.1.4.6
Cancel the common factor of and .
Tap for more steps...
Step 2.1.4.6.1
Factor out of .
Step 2.1.4.6.2
Cancel the common factors.
Tap for more steps...
Step 2.1.4.6.2.1
Factor out of .
Step 2.1.4.6.2.2
Cancel the common factor.
Step 2.1.4.6.2.3
Rewrite the expression.
Step 2.1.4.6.2.4
Divide by .
Step 2.2
Find the second derivative.
Tap for more steps...
Step 2.2.1
Differentiate.
Tap for more steps...
Step 2.2.1.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2.1.2
Differentiate using the Power Rule which states that is where .
Step 2.2.2
Evaluate .
Tap for more steps...
Step 2.2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.2.3
Multiply by .
Step 2.2.3
Evaluate .
Tap for more steps...
Step 2.2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.3.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3.3
Multiply by .
Step 2.3
The second derivative of with respect to is .
Step 3
Set the second derivative equal to then solve the equation .
Tap for more steps...
Step 3.1
Set the second derivative equal to .
Step 3.2
Factor the left side of the equation.
Tap for more steps...
Step 3.2.1
Factor out of .
Tap for more steps...
Step 3.2.1.1
Factor out of .
Step 3.2.1.2
Factor out of .
Step 3.2.1.3
Factor out of .
Step 3.2.1.4
Factor out of .
Step 3.2.1.5
Factor out of .
Step 3.2.2
Factor using the perfect square rule.
Tap for more steps...
Step 3.2.2.1
Rewrite as .
Step 3.2.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 3.2.2.3
Rewrite the polynomial.
Step 3.2.2.4
Factor using the perfect square trinomial rule , where and .
Step 3.3
Divide each term in by and simplify.
Tap for more steps...
Step 3.3.1
Divide each term in by .
Step 3.3.2
Simplify the left side.
Tap for more steps...
Step 3.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.3.2.1.1
Cancel the common factor.
Step 3.3.2.1.2
Divide by .
Step 3.3.3
Simplify the right side.
Tap for more steps...
Step 3.3.3.1
Divide by .
Step 3.4
Set the equal to .
Step 3.5
Subtract from both sides of the equation.
Step 4
Find the points where the second derivative is .
Tap for more steps...
Step 4.1
Substitute in to find the value of .
Tap for more steps...
Step 4.1.1
Replace the variable with in the expression.
Step 4.1.2
Simplify the result.
Tap for more steps...
Step 4.1.2.1
Simplify each term.
Tap for more steps...
Step 4.1.2.1.1
Raise to the power of .
Step 4.1.2.1.2
Combine and .
Step 4.1.2.1.3
Raise to the power of .
Step 4.1.2.1.4
Multiply by .
Step 4.1.2.1.5
Raise to the power of .
Step 4.1.2.1.6
Multiply .
Tap for more steps...
Step 4.1.2.1.6.1
Combine and .
Step 4.1.2.1.6.2
Multiply by .
Step 4.1.2.2
Find the common denominator.
Tap for more steps...
Step 4.1.2.2.1
Write as a fraction with denominator .
Step 4.1.2.2.2
Multiply by .
Step 4.1.2.2.3
Multiply by .
Step 4.1.2.2.4
Multiply by .
Step 4.1.2.2.5
Multiply by .
Step 4.1.2.2.6
Multiply by .
Step 4.1.2.3
Combine the numerators over the common denominator.
Step 4.1.2.4
Simplify each term.
Tap for more steps...
Step 4.1.2.4.1
Multiply by .
Step 4.1.2.4.2
Multiply by .
Step 4.1.2.5
Simplify by adding and subtracting.
Tap for more steps...
Step 4.1.2.5.1
Subtract from .
Step 4.1.2.5.2
Add and .
Step 4.1.2.6
The final answer is .
Step 4.2
The point found by substituting in is . This point can be an inflection point.
Step 5
Split into intervals around the points that could potentially be inflection points.
Step 6
Substitute a value from the interval into the second derivative to determine if it is increasing or decreasing.
Tap for more steps...
Step 6.1
Replace the variable with in the expression.
Step 6.2
Simplify the result.
Tap for more steps...
Step 6.2.1
Simplify each term.
Tap for more steps...
Step 6.2.1.1
Raise to the power of .
Step 6.2.1.2
Multiply by .
Step 6.2.1.3
Multiply by .
Step 6.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 6.2.2.1
Subtract from .
Step 6.2.2.2
Add and .
Step 6.2.3
The final answer is .
Step 6.3
At , the second derivative is . Since this is positive, the second derivative is increasing on the interval .
Increasing on since
Increasing on since
Step 7
Substitute a value from the interval into the second derivative to determine if it is increasing or decreasing.
Tap for more steps...
Step 7.1
Replace the variable with in the expression.
Step 7.2
Simplify the result.
Tap for more steps...
Step 7.2.1
Simplify each term.
Tap for more steps...
Step 7.2.1.1
Raise to the power of .
Step 7.2.1.2
Multiply by .
Step 7.2.1.3
Multiply by .
Step 7.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 7.2.2.1
Subtract from .
Step 7.2.2.2
Add and .
Step 7.2.3
The final answer is .
Step 7.3
At , the second derivative is . Since this is positive, the second derivative is increasing on the interval .
Increasing on since
Increasing on since
Step 8
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. There are no points on the graph that satisfy these requirements.
No Inflection Points