Calculus Examples

Find the Local Maxima and Minima f(x)=-1/2x^4+8x^3-32x^2-5
Step 1
Find the first derivative of the function.
Tap for more steps...
Step 1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2
Evaluate .
Tap for more steps...
Step 1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
Multiply by .
Step 1.2.4
Combine and .
Step 1.2.5
Combine and .
Step 1.2.6
Cancel the common factor of and .
Tap for more steps...
Step 1.2.6.1
Factor out of .
Step 1.2.6.2
Cancel the common factors.
Tap for more steps...
Step 1.2.6.2.1
Factor out of .
Step 1.2.6.2.2
Cancel the common factor.
Step 1.2.6.2.3
Rewrite the expression.
Step 1.2.6.2.4
Divide by .
Step 1.3
Evaluate .
Tap for more steps...
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3
Multiply by .
Step 1.4
Evaluate .
Tap for more steps...
Step 1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.4.2
Differentiate using the Power Rule which states that is where .
Step 1.4.3
Multiply by .
Step 1.5
Differentiate using the Constant Rule.
Tap for more steps...
Step 1.5.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.5.2
Add and .
Step 2
Find the second derivative of the function.
Tap for more steps...
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Tap for more steps...
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3
Multiply by .
Step 2.3
Evaluate .
Tap for more steps...
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Differentiate using the Power Rule which states that is where .
Step 2.3.3
Multiply by .
Step 2.4
Evaluate .
Tap for more steps...
Step 2.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.4.2
Differentiate using the Power Rule which states that is where .
Step 2.4.3
Multiply by .
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Find the first derivative.
Tap for more steps...
Step 4.1
Find the first derivative.
Tap for more steps...
Step 4.1.1
By the Sum Rule, the derivative of with respect to is .
Step 4.1.2
Evaluate .
Tap for more steps...
Step 4.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.2.2
Differentiate using the Power Rule which states that is where .
Step 4.1.2.3
Multiply by .
Step 4.1.2.4
Combine and .
Step 4.1.2.5
Combine and .
Step 4.1.2.6
Cancel the common factor of and .
Tap for more steps...
Step 4.1.2.6.1
Factor out of .
Step 4.1.2.6.2
Cancel the common factors.
Tap for more steps...
Step 4.1.2.6.2.1
Factor out of .
Step 4.1.2.6.2.2
Cancel the common factor.
Step 4.1.2.6.2.3
Rewrite the expression.
Step 4.1.2.6.2.4
Divide by .
Step 4.1.3
Evaluate .
Tap for more steps...
Step 4.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.3.2
Differentiate using the Power Rule which states that is where .
Step 4.1.3.3
Multiply by .
Step 4.1.4
Evaluate .
Tap for more steps...
Step 4.1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.4.2
Differentiate using the Power Rule which states that is where .
Step 4.1.4.3
Multiply by .
Step 4.1.5
Differentiate using the Constant Rule.
Tap for more steps...
Step 4.1.5.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.5.2
Add and .
Step 4.2
The first derivative of with respect to is .
Step 5
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 5.1
Set the first derivative equal to .
Step 5.2
Factor the left side of the equation.
Tap for more steps...
Step 5.2.1
Factor out of .
Tap for more steps...
Step 5.2.1.1
Factor out of .
Step 5.2.1.2
Factor out of .
Step 5.2.1.3
Factor out of .
Step 5.2.1.4
Factor out of .
Step 5.2.1.5
Factor out of .
Step 5.2.2
Factor.
Tap for more steps...
Step 5.2.2.1
Factor using the AC method.
Tap for more steps...
Step 5.2.2.1.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 5.2.2.1.2
Write the factored form using these integers.
Step 5.2.2.2
Remove unnecessary parentheses.
Step 5.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 5.4
Set equal to .
Step 5.5
Set equal to and solve for .
Tap for more steps...
Step 5.5.1
Set equal to .
Step 5.5.2
Add to both sides of the equation.
Step 5.6
Set equal to and solve for .
Tap for more steps...
Step 5.6.1
Set equal to .
Step 5.6.2
Add to both sides of the equation.
Step 5.7
The final solution is all the values that make true.
Step 6
Find the values where the derivative is undefined.
Tap for more steps...
Step 6.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 7
Critical points to evaluate.
Step 8
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 9
Evaluate the second derivative.
Tap for more steps...
Step 9.1
Simplify each term.
Tap for more steps...
Step 9.1.1
Raising to any positive power yields .
Step 9.1.2
Multiply by .
Step 9.1.3
Multiply by .
Step 9.2
Simplify by adding and subtracting.
Tap for more steps...
Step 9.2.1
Add and .
Step 9.2.2
Subtract from .
Step 10
is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.
is a local maximum
Step 11
Find the y-value when .
Tap for more steps...
Step 11.1
Replace the variable with in the expression.
Step 11.2
Simplify the result.
Tap for more steps...
Step 11.2.1
Simplify each term.
Tap for more steps...
Step 11.2.1.1
Raising to any positive power yields .
Step 11.2.1.2
Multiply .
Tap for more steps...
Step 11.2.1.2.1
Multiply by .
Step 11.2.1.2.2
Multiply by .
Step 11.2.1.3
Raising to any positive power yields .
Step 11.2.1.4
Multiply by .
Step 11.2.1.5
Raising to any positive power yields .
Step 11.2.1.6
Multiply by .
Step 11.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 11.2.2.1
Add and .
Step 11.2.2.2
Add and .
Step 11.2.2.3
Subtract from .
Step 11.2.3
The final answer is .
Step 12
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 13
Evaluate the second derivative.
Tap for more steps...
Step 13.1
Simplify each term.
Tap for more steps...
Step 13.1.1
Raise to the power of .
Step 13.1.2
Multiply by .
Step 13.1.3
Multiply by .
Step 13.2
Simplify by adding and subtracting.
Tap for more steps...
Step 13.2.1
Add and .
Step 13.2.2
Subtract from .
Step 14
is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.
is a local maximum
Step 15
Find the y-value when .
Tap for more steps...
Step 15.1
Replace the variable with in the expression.
Step 15.2
Simplify the result.
Tap for more steps...
Step 15.2.1
Simplify each term.
Tap for more steps...
Step 15.2.1.1
Raise to the power of .
Step 15.2.1.2
Cancel the common factor of .
Tap for more steps...
Step 15.2.1.2.1
Move the leading negative in into the numerator.
Step 15.2.1.2.2
Factor out of .
Step 15.2.1.2.3
Cancel the common factor.
Step 15.2.1.2.4
Rewrite the expression.
Step 15.2.1.3
Multiply by .
Step 15.2.1.4
Multiply by by adding the exponents.
Tap for more steps...
Step 15.2.1.4.1
Multiply by .
Tap for more steps...
Step 15.2.1.4.1.1
Raise to the power of .
Step 15.2.1.4.1.2
Use the power rule to combine exponents.
Step 15.2.1.4.2
Add and .
Step 15.2.1.5
Raise to the power of .
Step 15.2.1.6
Raise to the power of .
Step 15.2.1.7
Multiply by .
Step 15.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 15.2.2.1
Add and .
Step 15.2.2.2
Subtract from .
Step 15.2.2.3
Subtract from .
Step 15.2.3
The final answer is .
Step 16
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 17
Evaluate the second derivative.
Tap for more steps...
Step 17.1
Simplify each term.
Tap for more steps...
Step 17.1.1
Raise to the power of .
Step 17.1.2
Multiply by .
Step 17.1.3
Multiply by .
Step 17.2
Simplify by adding and subtracting.
Tap for more steps...
Step 17.2.1
Add and .
Step 17.2.2
Subtract from .
Step 18
is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
is a local minimum
Step 19
Find the y-value when .
Tap for more steps...
Step 19.1
Replace the variable with in the expression.
Step 19.2
Simplify the result.
Tap for more steps...
Step 19.2.1
Simplify each term.
Tap for more steps...
Step 19.2.1.1
Raise to the power of .
Step 19.2.1.2
Cancel the common factor of .
Tap for more steps...
Step 19.2.1.2.1
Move the leading negative in into the numerator.
Step 19.2.1.2.2
Factor out of .
Step 19.2.1.2.3
Cancel the common factor.
Step 19.2.1.2.4
Rewrite the expression.
Step 19.2.1.3
Multiply by .
Step 19.2.1.4
Raise to the power of .
Step 19.2.1.5
Multiply by .
Step 19.2.1.6
Raise to the power of .
Step 19.2.1.7
Multiply by .
Step 19.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 19.2.2.1
Add and .
Step 19.2.2.2
Subtract from .
Step 19.2.2.3
Subtract from .
Step 19.2.3
The final answer is .
Step 20
These are the local extrema for .
is a local maxima
is a local maxima
is a local minima
Step 21