Enter a problem...
Calculus Examples
Step 1
Divide the numerator and denominator by the highest power of in the denominator, which is .
Step 2
Step 2.1
Simplify each term.
Step 2.1.1
Cancel the common factor of .
Step 2.1.1.1
Cancel the common factor.
Step 2.1.1.2
Rewrite the expression.
Step 2.1.2
Multiply by .
Step 2.2
Cancel the common factor of .
Step 2.2.1
Cancel the common factor.
Step 2.2.2
Divide by .
Step 2.3
Split the limit using the Limits Quotient Rule on the limit as approaches .
Step 2.4
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 3
Since its numerator approaches a real number while its denominator is unbounded, the fraction approaches .
Step 4
Step 4.1
Evaluate the limit of which is constant as approaches .
Step 4.2
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 4.3
Move the term outside of the limit because it is constant with respect to .
Step 5
Since its numerator approaches a real number while its denominator is unbounded, the fraction approaches .
Step 6
Step 6.1
Evaluate the limit of which is constant as approaches .
Step 6.2
Simplify the answer.
Step 6.2.1
Simplify the numerator.
Step 6.2.1.1
Multiply by .
Step 6.2.1.2
Subtract from .
Step 6.2.2
Simplify the denominator.
Step 6.2.2.1
Multiply by .
Step 6.2.2.2
Add and .
Step 6.2.3
Move the negative in front of the fraction.
Step 7
The result can be shown in multiple forms.
Exact Form:
Decimal Form: