Calculus Examples

Find the Antiderivative e^x(1-3e^(-2x))
Step 1
Write as a function.
Step 2
The function can be found by finding the indefinite integral of the derivative .
Step 3
Set up the integral to solve.
Step 4
Simplify.
Tap for more steps...
Step 4.1
Apply the distributive property.
Step 4.2
Multiply by .
Step 4.3
Rewrite using the commutative property of multiplication.
Step 4.4
Multiply by by adding the exponents.
Tap for more steps...
Step 4.4.1
Move .
Step 4.4.2
Use the power rule to combine exponents.
Step 4.4.3
Add and .
Step 5
Split the single integral into multiple integrals.
Step 6
The integral of with respect to is .
Step 7
Since is constant with respect to , move out of the integral.
Step 8
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 8.1
Let . Find .
Tap for more steps...
Step 8.1.1
Differentiate .
Step 8.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 8.1.3
Differentiate using the Power Rule which states that is where .
Step 8.1.4
Multiply by .
Step 8.2
Rewrite the problem using and .
Step 9
Since is constant with respect to , move out of the integral.
Step 10
Multiply by .
Step 11
The integral of with respect to is .
Step 12
Simplify.
Step 13
Replace all occurrences of with .
Step 14
The answer is the antiderivative of the function .