Enter a problem...
Calculus Examples
Step 1
Step 1.1
Factor out of .
Step 1.2
Factor out of .
Step 1.3
Factor out of .
Step 1.4
Cancel the common factors.
Step 1.4.1
Factor out of .
Step 1.4.2
Factor out of .
Step 1.4.3
Factor out of .
Step 1.4.4
Cancel the common factor.
Step 1.4.5
Rewrite the expression.
Step 2
Step 2.1
Evaluate the limit of the numerator and the limit of the denominator.
Step 2.1.1
Take the limit of the numerator and the limit of the denominator.
Step 2.1.2
Evaluate the limit of the numerator.
Step 2.1.2.1
Evaluate the limit.
Step 2.1.2.1.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 2.1.2.1.2
Evaluate the limit of which is constant as approaches .
Step 2.1.2.1.3
Move the term outside of the limit because it is constant with respect to .
Step 2.1.2.2
Evaluate the limit of by plugging in for .
Step 2.1.2.3
Simplify the answer.
Step 2.1.2.3.1
Cancel the common factor of .
Step 2.1.2.3.1.1
Factor out of .
Step 2.1.2.3.1.2
Cancel the common factor.
Step 2.1.2.3.1.3
Rewrite the expression.
Step 2.1.2.3.2
Subtract from .
Step 2.1.3
Evaluate the limit of the denominator.
Step 2.1.3.1
Evaluate the limit.
Step 2.1.3.1.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 2.1.3.1.2
Evaluate the limit of which is constant as approaches .
Step 2.1.3.1.3
Move the term outside of the limit because it is constant with respect to .
Step 2.1.3.1.4
Move the exponent from outside the limit using the Limits Power Rule.
Step 2.1.3.2
Evaluate the limit of by plugging in for .
Step 2.1.3.3
Simplify the answer.
Step 2.1.3.3.1
Simplify each term.
Step 2.1.3.3.1.1
Apply the product rule to .
Step 2.1.3.3.1.2
One to any power is one.
Step 2.1.3.3.1.3
Raise to the power of .
Step 2.1.3.3.1.4
Cancel the common factor of .
Step 2.1.3.3.1.4.1
Factor out of .
Step 2.1.3.3.1.4.2
Cancel the common factor.
Step 2.1.3.3.1.4.3
Rewrite the expression.
Step 2.1.3.3.2
Subtract from .
Step 2.1.3.3.3
The expression contains a division by . The expression is undefined.
Undefined
Step 2.1.3.4
The expression contains a division by . The expression is undefined.
Undefined
Step 2.1.4
The expression contains a division by . The expression is undefined.
Undefined
Step 2.2
Since is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
Step 2.3
Find the derivative of the numerator and denominator.
Step 2.3.1
Differentiate the numerator and denominator.
Step 2.3.2
By the Sum Rule, the derivative of with respect to is .
Step 2.3.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.4
Evaluate .
Step 2.3.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.4.2
Differentiate using the Power Rule which states that is where .
Step 2.3.4.3
Multiply by .
Step 2.3.5
Subtract from .
Step 2.3.6
By the Sum Rule, the derivative of with respect to is .
Step 2.3.7
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.8
Evaluate .
Step 2.3.8.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.8.2
Differentiate using the Power Rule which states that is where .
Step 2.3.8.3
Multiply by .
Step 2.3.9
Subtract from .
Step 2.4
Cancel the common factor of and .
Step 2.4.1
Factor out of .
Step 2.4.2
Cancel the common factors.
Step 2.4.2.1
Factor out of .
Step 2.4.2.2
Cancel the common factor.
Step 2.4.2.3
Rewrite the expression.
Step 3
Step 3.1
Move the term outside of the limit because it is constant with respect to .
Step 3.2
Split the limit using the Limits Quotient Rule on the limit as approaches .
Step 3.3
Evaluate the limit of which is constant as approaches .
Step 3.4
Move the exponent from outside the limit using the Limits Power Rule.
Step 4
Evaluate the limit of by plugging in for .
Step 5
Step 5.1
Combine.
Step 5.2
Multiply by .
Step 5.3
Simplify the denominator.
Step 5.3.1
Apply the product rule to .
Step 5.3.2
One to any power is one.
Step 5.3.3
Raise to the power of .
Step 5.4
Combine and .
Step 5.5
Divide by .
Step 6
The result can be shown in multiple forms.
Exact Form:
Decimal Form: