Calculus Examples

Evaluate the Integral integral of cos(2-5x)^2 with respect to x
Step 1
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 1.1
Let . Find .
Tap for more steps...
Step 1.1.1
Differentiate .
Step 1.1.2
Differentiate.
Tap for more steps...
Step 1.1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3
Evaluate .
Tap for more steps...
Step 1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.1.3.3
Multiply by .
Step 1.1.4
Subtract from .
Step 1.2
Rewrite the problem using and .
Step 2
Simplify.
Tap for more steps...
Step 2.1
Move the negative in front of the fraction.
Step 2.2
Combine and .
Step 3
Since is constant with respect to , move out of the integral.
Step 4
Since is constant with respect to , move out of the integral.
Step 5
Use the half-angle formula to rewrite as .
Step 6
Since is constant with respect to , move out of the integral.
Step 7
Simplify.
Tap for more steps...
Step 7.1
Multiply by .
Step 7.2
Multiply by .
Step 8
Split the single integral into multiple integrals.
Step 9
Apply the constant rule.
Step 10
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 10.1
Let . Find .
Tap for more steps...
Step 10.1.1
Differentiate .
Step 10.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 10.1.3
Differentiate using the Power Rule which states that is where .
Step 10.1.4
Multiply by .
Step 10.2
Rewrite the problem using and .
Step 11
Combine and .
Step 12
Since is constant with respect to , move out of the integral.
Step 13
The integral of with respect to is .
Step 14
Simplify.
Step 15
Substitute back in for each integration substitution variable.
Tap for more steps...
Step 15.1
Replace all occurrences of with .
Step 15.2
Replace all occurrences of with .
Step 15.3
Replace all occurrences of with .