Enter a problem...
Calculus Examples
Step 1
Since is constant with respect to , the derivative of with respect to is .
Step 2
Step 2.1
To apply the Chain Rule, set as .
Step 2.2
Differentiate using the Power Rule which states that is where .
Step 2.3
Replace all occurrences of with .
Step 3
Step 3.1
Multiply by .
Step 3.2
By the Sum Rule, the derivative of with respect to is .
Step 3.3
Since is constant with respect to , the derivative of with respect to is .
Step 3.4
Add and .
Step 4
Step 4.1
To apply the Chain Rule, set as .
Step 4.2
Differentiate using the Exponential Rule which states that is where =.
Step 4.3
Replace all occurrences of with .
Step 5
Step 5.1
By the Sum Rule, the derivative of with respect to is .
Step 5.2
Since is constant with respect to , the derivative of with respect to is .
Step 5.3
Add and .
Step 5.4
Since is constant with respect to , the derivative of with respect to is .
Step 5.5
Multiply by .
Step 5.6
Differentiate using the Power Rule which states that is where .
Step 5.7
Multiply by .
Step 6
Step 6.1
Rewrite the expression using the negative exponent rule .
Step 6.2
Combine terms.
Step 6.2.1
Combine and .
Step 6.2.2
Combine and .