Enter a problem...
Calculus Examples
f(x)=10x2+xf(x)=10x2+x
Step 1
The minimum of a quadratic function occurs at x=-b2ax=−b2a. If aa is positive, the minimum value of the function is f(-b2a)f(−b2a).
fminfminx=ax2+bx+cx=ax2+bx+c occurs at x=-b2ax=−b2a
Step 2
Step 2.1
Substitute in the values of aa and bb.
x=-12(10)x=−12(10)
Step 2.2
Remove parentheses.
x=-12(10)x=−12(10)
Step 2.3
Multiply 22 by 1010.
x=-120x=−120
x=-120x=−120
Step 3
Step 3.1
Replace the variable xx with -120−120 in the expression.
f(-120)=10(-120)2-120f(−120)=10(−120)2−120
Step 3.2
Simplify the result.
Step 3.2.1
Remove parentheses.
f(-120)=10(-120)2-120f(−120)=10(−120)2−120
Step 3.2.2
Simplify each term.
Step 3.2.2.1
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Step 3.2.2.1.1
Apply the product rule to -120−120.
f(-120)=10((-1)2(120)2)-120f(−120)=10((−1)2(120)2)−120
Step 3.2.2.1.2
Apply the product rule to 120120.
f(-120)=10((-1)2(12202))-120f(−120)=10((−1)2(12202))−120
f(-120)=10((-1)2(12202))-120f(−120)=10((−1)2(12202))−120
Step 3.2.2.2
Raise -1−1 to the power of 22.
f(-120)=10(1(12202))-120f(−120)=10(1(12202))−120
Step 3.2.2.3
Multiply 12202 by 1.
f(-120)=10(12202)-120
Step 3.2.2.4
One to any power is one.
f(-120)=10(1202)-120
Step 3.2.2.5
Raise 20 to the power of 2.
f(-120)=10(1400)-120
Step 3.2.2.6
Cancel the common factor of 10.
Step 3.2.2.6.1
Factor 10 out of 400.
f(-120)=10(110(40))-120
Step 3.2.2.6.2
Cancel the common factor.
f(-120)=10(110⋅40)-120
Step 3.2.2.6.3
Rewrite the expression.
f(-120)=140-120
f(-120)=140-120
f(-120)=140-120
Step 3.2.3
To write -120 as a fraction with a common denominator, multiply by 22.
f(-120)=140-120⋅22
Step 3.2.4
Write each expression with a common denominator of 40, by multiplying each by an appropriate factor of 1.
Step 3.2.4.1
Multiply 120 by 22.
f(-120)=140-220⋅2
Step 3.2.4.2
Multiply 20 by 2.
f(-120)=140-240
f(-120)=140-240
Step 3.2.5
Combine the numerators over the common denominator.
f(-120)=1-240
Step 3.2.6
Subtract 2 from 1.
f(-120)=-140
Step 3.2.7
Move the negative in front of the fraction.
f(-120)=-140
Step 3.2.8
The final answer is -140.
-140
-140
-140
Step 4
Use the x and y values to find where the minimum occurs.
(-120,-140)
Step 5