Calculus Examples

Find the Derivative - d/dx -2e^(3x)sin(2x)+3e^(3x)cos(2x)
Step 1
By the Sum Rule, the derivative of with respect to is .
Step 2
Evaluate .
Tap for more steps...
Step 2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
Differentiate using the Product Rule which states that is where and .
Step 2.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.3.1
To apply the Chain Rule, set as .
Step 2.3.2
The derivative of with respect to is .
Step 2.3.3
Replace all occurrences of with .
Step 2.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.5
Differentiate using the Power Rule which states that is where .
Step 2.6
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.6.1
To apply the Chain Rule, set as .
Step 2.6.2
Differentiate using the Exponential Rule which states that is where =.
Step 2.6.3
Replace all occurrences of with .
Step 2.7
Since is constant with respect to , the derivative of with respect to is .
Step 2.8
Differentiate using the Power Rule which states that is where .
Step 2.9
Multiply by .
Step 2.10
Move to the left of .
Step 2.11
Multiply by .
Step 2.12
Move to the left of .
Step 3
Evaluate .
Tap for more steps...
Step 3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2
Differentiate using the Product Rule which states that is where and .
Step 3.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.3.1
To apply the Chain Rule, set as .
Step 3.3.2
The derivative of with respect to is .
Step 3.3.3
Replace all occurrences of with .
Step 3.4
Since is constant with respect to , the derivative of with respect to is .
Step 3.5
Differentiate using the Power Rule which states that is where .
Step 3.6
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.6.1
To apply the Chain Rule, set as .
Step 3.6.2
Differentiate using the Exponential Rule which states that is where =.
Step 3.6.3
Replace all occurrences of with .
Step 3.7
Since is constant with respect to , the derivative of with respect to is .
Step 3.8
Differentiate using the Power Rule which states that is where .
Step 3.9
Multiply by .
Step 3.10
Multiply by .
Step 3.11
Multiply by .
Step 3.12
Move to the left of .
Step 4
Simplify.
Tap for more steps...
Step 4.1
Apply the distributive property.
Step 4.2
Apply the distributive property.
Step 4.3
Combine terms.
Tap for more steps...
Step 4.3.1
Multiply by .
Step 4.3.2
Multiply by .
Step 4.3.3
Multiply by .
Step 4.3.4
Multiply by .
Step 4.3.5
Subtract from .
Tap for more steps...
Step 4.3.5.1
Move .
Step 4.3.5.2
Subtract from .
Step 4.3.6
Add and .
Tap for more steps...
Step 4.3.6.1
Move .
Step 4.3.6.2
Add and .