Enter a problem...
Calculus Examples
limx→π3-5tan(2x)+cos(x)limx→π3−5tan(2x)+cos(x)
Step 1
Split the limit using the Sum of Limits Rule on the limit as xx approaches π3π3.
-limx→π35tan(2x)+limx→π3cos(x)−limx→π35tan(2x)+limx→π3cos(x)
Step 2
Move the term 55 outside of the limit because it is constant with respect to xx.
-5limx→π3tan(2x)+limx→π3cos(x)−5limx→π3tan(2x)+limx→π3cos(x)
Step 3
Move the limit inside the trig function because tangent is continuous.
-5tan(limx→π32x)+limx→π3cos(x)−5tan(limx→π32x)+limx→π3cos(x)
Step 4
Move the term 22 outside of the limit because it is constant with respect to xx.
-5tan(2limx→π3x)+limx→π3cos(x)−5tan(2limx→π3x)+limx→π3cos(x)
Step 5
Move the limit inside the trig function because cosine is continuous.
-5tan(2limx→π3x)+cos(limx→π3x)
Step 6
Step 6.1
Evaluate the limit of x by plugging in π3 for x.
-5tan(2π3)+cos(limx→π3x)
Step 6.2
Evaluate the limit of x by plugging in π3 for x.
-5tan(2π3)+cos(π3)
-5tan(2π3)+cos(π3)
Step 7
Step 7.1
Combine 2 and π3.
-5tan(2π3)+cos(π3)
Step 7.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.
-5(-tan(π3))+cos(π3)
Step 7.3
The exact value of tan(π3) is √3.
-5(-√3)+cos(π3)
Step 7.4
Multiply -1 by -5.
5√3+cos(π3)
Step 7.5
The exact value of cos(π3) is 12.
5√3+12
5√3+12
Step 8
The result can be shown in multiple forms.
Exact Form:
5√3+12
Decimal Form:
9.16025403…