Calculus Examples

Evaluate the Limit limit as x approaches pi/3 of -5tan(2x)+cos(x)
limxπ3-5tan(2x)+cos(x)limxπ35tan(2x)+cos(x)
Step 1
Split the limit using the Sum of Limits Rule on the limit as xx approaches π3π3.
-limxπ35tan(2x)+limxπ3cos(x)limxπ35tan(2x)+limxπ3cos(x)
Step 2
Move the term 55 outside of the limit because it is constant with respect to xx.
-5limxπ3tan(2x)+limxπ3cos(x)5limxπ3tan(2x)+limxπ3cos(x)
Step 3
Move the limit inside the trig function because tangent is continuous.
-5tan(limxπ32x)+limxπ3cos(x)5tan(limxπ32x)+limxπ3cos(x)
Step 4
Move the term 22 outside of the limit because it is constant with respect to xx.
-5tan(2limxπ3x)+limxπ3cos(x)5tan(2limxπ3x)+limxπ3cos(x)
Step 5
Move the limit inside the trig function because cosine is continuous.
-5tan(2limxπ3x)+cos(limxπ3x)
Step 6
Evaluate the limits by plugging in π3 for all occurrences of x.
Tap for more steps...
Step 6.1
Evaluate the limit of x by plugging in π3 for x.
-5tan(2π3)+cos(limxπ3x)
Step 6.2
Evaluate the limit of x by plugging in π3 for x.
-5tan(2π3)+cos(π3)
-5tan(2π3)+cos(π3)
Step 7
Simplify each term.
Tap for more steps...
Step 7.1
Combine 2 and π3.
-5tan(2π3)+cos(π3)
Step 7.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.
-5(-tan(π3))+cos(π3)
Step 7.3
The exact value of tan(π3) is 3.
-5(-3)+cos(π3)
Step 7.4
Multiply -1 by -5.
53+cos(π3)
Step 7.5
The exact value of cos(π3) is 12.
53+12
53+12
Step 8
The result can be shown in multiple forms.
Exact Form:
53+12
Decimal Form:
9.16025403
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]