Enter a problem...
Calculus Examples
Step 1
Step 1.1
Let . Find .
Step 1.1.1
Differentiate .
Step 1.1.2
By the Sum Rule, the derivative of with respect to is .
Step 1.1.3
Differentiate using the Power Rule which states that is where .
Step 1.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.5
Add and .
Step 1.2
Substitute the lower limit in for in .
Step 1.3
Subtract from .
Step 1.4
Substitute the upper limit in for in .
Step 1.5
Subtract from .
Step 1.6
The values found for and will be used to evaluate the definite integral.
Step 1.7
Rewrite the problem using , , and the new limits of integration.
Step 2
Let , where . Then . Note that since , is positive.
Step 3
Step 3.1
Simplify .
Step 3.1.1
Simplify each term.
Step 3.1.1.1
Apply the product rule to .
Step 3.1.1.2
Raise to the power of .
Step 3.1.1.3
Multiply by .
Step 3.1.2
Factor out of .
Step 3.1.3
Factor out of .
Step 3.1.4
Factor out of .
Step 3.1.5
Apply pythagorean identity.
Step 3.1.6
Rewrite as .
Step 3.1.7
Pull terms out from under the radical, assuming positive real numbers.
Step 3.2
Simplify.
Step 3.2.1
Multiply by .
Step 3.2.2
Raise to the power of .
Step 3.2.3
Raise to the power of .
Step 3.2.4
Use the power rule to combine exponents.
Step 3.2.5
Add and .
Step 4
Since is constant with respect to , move out of the integral.
Step 5
Use the half-angle formula to rewrite as .
Step 6
Since is constant with respect to , move out of the integral.
Step 7
Step 7.1
Combine and .
Step 7.2
Cancel the common factor of and .
Step 7.2.1
Factor out of .
Step 7.2.2
Cancel the common factors.
Step 7.2.2.1
Factor out of .
Step 7.2.2.2
Cancel the common factor.
Step 7.2.2.3
Rewrite the expression.
Step 7.2.2.4
Divide by .
Step 8
Split the single integral into multiple integrals.
Step 9
Apply the constant rule.
Step 10
Step 10.1
Let . Find .
Step 10.1.1
Differentiate .
Step 10.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 10.1.3
Differentiate using the Power Rule which states that is where .
Step 10.1.4
Multiply by .
Step 10.2
Substitute the lower limit in for in .
Step 10.3
Cancel the common factor of .
Step 10.3.1
Move the leading negative in into the numerator.
Step 10.3.2
Cancel the common factor.
Step 10.3.3
Rewrite the expression.
Step 10.4
Substitute the upper limit in for in .
Step 10.5
Cancel the common factor of .
Step 10.5.1
Cancel the common factor.
Step 10.5.2
Rewrite the expression.
Step 10.6
The values found for and will be used to evaluate the definite integral.
Step 10.7
Rewrite the problem using , , and the new limits of integration.
Step 11
Combine and .
Step 12
Since is constant with respect to , move out of the integral.
Step 13
The integral of with respect to is .
Step 14
Combine and .
Step 15
Step 15.1
Evaluate at and at .
Step 15.2
Evaluate at and at .
Step 15.3
Simplify.
Step 15.3.1
Combine the numerators over the common denominator.
Step 15.3.2
Add and .
Step 15.3.3
Cancel the common factor of .
Step 15.3.3.1
Cancel the common factor.
Step 15.3.3.2
Divide by .
Step 16
Step 16.1
Simplify the numerator.
Step 16.1.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
Step 16.1.2
The exact value of is .
Step 16.1.3
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
Step 16.1.4
The exact value of is .
Step 16.1.5
Multiply by .
Step 16.1.6
Add and .
Step 16.2
Divide by .
Step 17
Add and .
Step 18
The result can be shown in multiple forms.
Exact Form:
Decimal Form:
Step 19