Calculus Examples

Find the Antiderivative x*cos(x)
xcos(x)
Step 1
Write xcos(x) as a function.
f(x)=xcos(x)
Step 2
The function F(x) can be found by finding the indefinite integral of the derivative f(x).
F(x)=f(x)dx
Step 3
Set up the integral to solve.
F(x)=xcos(x)dx
Step 4
Integrate by parts using the formula udv=uv-vdu, where u=x and dv=cos(x).
xsin(x)-sin(x)dx
Step 5
The integral of sin(x) with respect to x is -cos(x).
xsin(x)-(-cos(x)+C)
Step 6
Rewrite xsin(x)-(-cos(x)+C) as xsin(x)+cos(x)+C.
xsin(x)+cos(x)+C
Step 7
The answer is the antiderivative of the function f(x)=xcos(x).
F(x)=xsin(x)+cos(x)+C
 [x2  12  π  xdx ]