Calculus Examples

Evaluate Using L'Hospital's Rule limit as x approaches -3 of (3sin(2x+6))/(3+x)
Step 1
Evaluate the limit of the numerator and the limit of the denominator.
Tap for more steps...
Step 1.1
Take the limit of the numerator and the limit of the denominator.
Step 1.2
Evaluate the limit of the numerator.
Tap for more steps...
Step 1.2.1
Evaluate the limit.
Tap for more steps...
Step 1.2.1.1
Move the term outside of the limit because it is constant with respect to .
Step 1.2.1.2
Move the limit inside the trig function because sine is continuous.
Step 1.2.1.3
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 1.2.1.4
Move the term outside of the limit because it is constant with respect to .
Step 1.2.1.5
Evaluate the limit of which is constant as approaches .
Step 1.2.2
Evaluate the limit of by plugging in for .
Step 1.2.3
Simplify the answer.
Tap for more steps...
Step 1.2.3.1
Multiply by .
Step 1.2.3.2
Add and .
Step 1.2.3.3
The exact value of is .
Step 1.2.3.4
Multiply by .
Step 1.3
Evaluate the limit of the denominator.
Tap for more steps...
Step 1.3.1
Evaluate the limit.
Tap for more steps...
Step 1.3.1.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 1.3.1.2
Evaluate the limit of which is constant as approaches .
Step 1.3.2
Evaluate the limit of by plugging in for .
Step 1.3.3
Subtract from .
Step 1.3.4
The expression contains a division by . The expression is undefined.
Undefined
Step 1.4
The expression contains a division by . The expression is undefined.
Undefined
Step 2
Since is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
Step 3
Find the derivative of the numerator and denominator.
Tap for more steps...
Step 3.1
Differentiate the numerator and denominator.
Step 3.2
Since is constant with respect to , the derivative of with respect to is .
Step 3.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.3.1
To apply the Chain Rule, set as .
Step 3.3.2
The derivative of with respect to is .
Step 3.3.3
Replace all occurrences of with .
Step 3.4
Remove parentheses.
Step 3.5
By the Sum Rule, the derivative of with respect to is .
Step 3.6
Since is constant with respect to , the derivative of with respect to is .
Step 3.7
Differentiate using the Power Rule which states that is where .
Step 3.8
Multiply by .
Step 3.9
Since is constant with respect to , the derivative of with respect to is .
Step 3.10
Add and .
Step 3.11
Multiply by .
Step 3.12
By the Sum Rule, the derivative of with respect to is .
Step 3.13
Since is constant with respect to , the derivative of with respect to is .
Step 3.14
Differentiate using the Power Rule which states that is where .
Step 3.15
Add and .
Step 4
Evaluate the limit.
Tap for more steps...
Step 4.1
Divide by .
Step 4.2
Move the term outside of the limit because it is constant with respect to .
Step 4.3
Move the limit inside the trig function because cosine is continuous.
Step 4.4
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 4.5
Move the term outside of the limit because it is constant with respect to .
Step 4.6
Evaluate the limit of which is constant as approaches .
Step 5
Evaluate the limit of by plugging in for .
Step 6
Simplify the answer.
Tap for more steps...
Step 6.1
Multiply by .
Step 6.2
Add and .
Step 6.3
The exact value of is .
Step 6.4
Multiply by .