Enter a problem...
Calculus Examples
Step 1
Differentiate both sides of the equation.
Step 2
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the chain rule, which states that is where and .
Step 2.2.2.1
To apply the Chain Rule, set as .
Step 2.2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.2.3
Replace all occurrences of with .
Step 2.2.3
Rewrite as .
Step 2.2.4
Multiply by .
Step 2.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.4
Evaluate .
Step 2.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.4.2
Differentiate using the chain rule, which states that is where and .
Step 2.4.2.1
To apply the Chain Rule, set as .
Step 2.4.2.2
Differentiate using the Power Rule which states that is where .
Step 2.4.2.3
Replace all occurrences of with .
Step 2.4.3
Rewrite as .
Step 2.4.4
Multiply by .
Step 2.5
Rewrite as .
Step 2.6
Add and .
Step 3
Step 3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2
Differentiate using the Power Rule which states that is where .
Step 3.3
Multiply by .
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Step 5.1
Factor out of .
Step 5.1.1
Factor out of .
Step 5.1.2
Factor out of .
Step 5.1.3
Raise to the power of .
Step 5.1.4
Factor out of .
Step 5.1.5
Factor out of .
Step 5.1.6
Factor out of .
Step 5.2
Factor.
Step 5.2.1
Factor by grouping.
Step 5.2.1.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 5.2.1.1.1
Factor out of .
Step 5.2.1.1.2
Rewrite as plus
Step 5.2.1.1.3
Apply the distributive property.
Step 5.2.1.1.4
Multiply by .
Step 5.2.1.2
Factor out the greatest common factor from each group.
Step 5.2.1.2.1
Group the first two terms and the last two terms.
Step 5.2.1.2.2
Factor out the greatest common factor (GCF) from each group.
Step 5.2.1.3
Factor the polynomial by factoring out the greatest common factor, .
Step 5.2.2
Remove unnecessary parentheses.
Step 5.3
Divide each term in by and simplify.
Step 5.3.1
Divide each term in by .
Step 5.3.2
Simplify the left side.
Step 5.3.2.1
Cancel the common factor of .
Step 5.3.2.1.1
Cancel the common factor.
Step 5.3.2.1.2
Rewrite the expression.
Step 5.3.2.2
Cancel the common factor of .
Step 5.3.2.2.1
Cancel the common factor.
Step 5.3.2.2.2
Divide by .
Step 5.3.3
Simplify the right side.
Step 5.3.3.1
Factor out of .
Step 5.3.3.2
Rewrite as .
Step 5.3.3.3
Factor out of .
Step 5.3.3.4
Rewrite negatives.
Step 5.3.3.4.1
Rewrite as .
Step 5.3.3.4.2
Move the negative in front of the fraction.
Step 6
Replace with .