Calculus Examples

Evaluate Using L'Hospital's Rule limit as x approaches 0 of (2 natural log of x+1+2x)/(4sin(x)-2x^3)
Step 1
Evaluate the limit of the numerator and the limit of the denominator.
Tap for more steps...
Step 1.1
Take the limit of the numerator and the limit of the denominator.
Step 1.2
Evaluate the limit of the numerator.
Tap for more steps...
Step 1.2.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 1.2.2
Move the term outside of the limit because it is constant with respect to .
Step 1.2.3
Move the limit inside the logarithm.
Step 1.2.4
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 1.2.5
Evaluate the limit of which is constant as approaches .
Step 1.2.6
Move the term outside of the limit because it is constant with respect to .
Step 1.2.7
Evaluate the limits by plugging in for all occurrences of .
Tap for more steps...
Step 1.2.7.1
Evaluate the limit of by plugging in for .
Step 1.2.7.2
Evaluate the limit of by plugging in for .
Step 1.2.8
Simplify the answer.
Tap for more steps...
Step 1.2.8.1
Simplify each term.
Tap for more steps...
Step 1.2.8.1.1
Add and .
Step 1.2.8.1.2
The natural logarithm of is .
Step 1.2.8.1.3
Multiply by .
Step 1.2.8.1.4
Multiply by .
Step 1.2.8.2
Add and .
Step 1.3
Evaluate the limit of the denominator.
Tap for more steps...
Step 1.3.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 1.3.2
Move the term outside of the limit because it is constant with respect to .
Step 1.3.3
Move the limit inside the trig function because sine is continuous.
Step 1.3.4
Move the term outside of the limit because it is constant with respect to .
Step 1.3.5
Move the exponent from outside the limit using the Limits Power Rule.
Step 1.3.6
Evaluate the limits by plugging in for all occurrences of .
Tap for more steps...
Step 1.3.6.1
Evaluate the limit of by plugging in for .
Step 1.3.6.2
Evaluate the limit of by plugging in for .
Step 1.3.7
Simplify the answer.
Tap for more steps...
Step 1.3.7.1
Simplify each term.
Tap for more steps...
Step 1.3.7.1.1
The exact value of is .
Step 1.3.7.1.2
Multiply by .
Step 1.3.7.1.3
Raising to any positive power yields .
Step 1.3.7.1.4
Multiply by .
Step 1.3.7.2
Add and .
Step 1.3.7.3
The expression contains a division by . The expression is undefined.
Undefined
Step 1.3.8
The expression contains a division by . The expression is undefined.
Undefined
Step 1.4
The expression contains a division by . The expression is undefined.
Undefined
Step 2
Since is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
Step 3
Find the derivative of the numerator and denominator.
Tap for more steps...
Step 3.1
Differentiate the numerator and denominator.
Step 3.2
By the Sum Rule, the derivative of with respect to is .
Step 3.3
Evaluate .
Tap for more steps...
Step 3.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.3.2.1
To apply the Chain Rule, set as .
Step 3.3.2.2
The derivative of with respect to is .
Step 3.3.2.3
Replace all occurrences of with .
Step 3.3.3
By the Sum Rule, the derivative of with respect to is .
Step 3.3.4
Differentiate using the Power Rule which states that is where .
Step 3.3.5
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.6
Add and .
Step 3.3.7
Multiply by .
Step 3.3.8
Combine and .
Step 3.4
Evaluate .
Tap for more steps...
Step 3.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.4.2
Differentiate using the Power Rule which states that is where .
Step 3.4.3
Multiply by .
Step 3.5
Simplify.
Tap for more steps...
Step 3.5.1
Combine terms.
Tap for more steps...
Step 3.5.1.1
To write as a fraction with a common denominator, multiply by .
Step 3.5.1.2
Combine the numerators over the common denominator.
Step 3.5.2
Reorder terms.
Step 3.6
By the Sum Rule, the derivative of with respect to is .
Step 3.7
Evaluate .
Tap for more steps...
Step 3.7.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.7.2
The derivative of with respect to is .
Step 3.8
Evaluate .
Tap for more steps...
Step 3.8.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.8.2
Differentiate using the Power Rule which states that is where .
Step 3.8.3
Multiply by .
Step 3.9
Reorder terms.
Step 4
Multiply the numerator by the reciprocal of the denominator.
Step 5
Simplify terms.
Tap for more steps...
Step 5.1
Multiply by .
Step 5.2
Cancel the common factor of and .
Tap for more steps...
Step 5.2.1
Factor out of .
Step 5.2.2
Factor out of .
Step 5.2.3
Cancel the common factors.
Tap for more steps...
Step 5.2.3.1
Factor out of .
Step 5.2.3.2
Cancel the common factor.
Step 5.2.3.3
Rewrite the expression.
Step 6
Split the limit using the Limits Quotient Rule on the limit as approaches .
Step 7
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 8
Evaluate the limit of which is constant as approaches .
Step 9
Evaluate the limit of which is constant as approaches .
Step 10
Split the limit using the Product of Limits Rule on the limit as approaches .
Step 11
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 12
Evaluate the limit of which is constant as approaches .
Step 13
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 14
Move the term outside of the limit because it is constant with respect to .
Step 15
Move the exponent from outside the limit using the Limits Power Rule.
Step 16
Move the term outside of the limit because it is constant with respect to .
Step 17
Move the limit inside the trig function because cosine is continuous.
Step 18
Evaluate the limits by plugging in for all occurrences of .
Tap for more steps...
Step 18.1
Evaluate the limit of by plugging in for .
Step 18.2
Evaluate the limit of by plugging in for .
Step 18.3
Evaluate the limit of by plugging in for .
Step 18.4
Evaluate the limit of by plugging in for .
Step 19
Simplify the answer.
Tap for more steps...
Step 19.1
Simplify the numerator.
Tap for more steps...
Step 19.1.1
Add and .
Step 19.1.2
Add and .
Step 19.2
Simplify the denominator.
Tap for more steps...
Step 19.2.1
Add and .
Step 19.2.2
Multiply by .
Step 19.2.3
Raising to any positive power yields .
Step 19.2.4
Multiply by .
Step 19.2.5
The exact value of is .
Step 19.2.6
Multiply by .
Step 19.2.7
Add and .
Step 19.3
Divide by .