Calculus Examples

Find the Antiderivative 6/(x^3)-4e^(2x)+7
Step 1
Write as a function.
Step 2
The function can be found by finding the indefinite integral of the derivative .
Step 3
Set up the integral to solve.
Step 4
Split the single integral into multiple integrals.
Step 5
Since is constant with respect to , move out of the integral.
Step 6
Apply basic rules of exponents.
Tap for more steps...
Step 6.1
Move out of the denominator by raising it to the power.
Step 6.2
Multiply the exponents in .
Tap for more steps...
Step 6.2.1
Apply the power rule and multiply exponents, .
Step 6.2.2
Multiply by .
Step 7
By the Power Rule, the integral of with respect to is .
Step 8
Simplify.
Tap for more steps...
Step 8.1
Combine and .
Step 8.2
Move to the denominator using the negative exponent rule .
Step 9
Since is constant with respect to , move out of the integral.
Step 10
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 10.1
Let . Find .
Tap for more steps...
Step 10.1.1
Differentiate .
Step 10.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 10.1.3
Differentiate using the Power Rule which states that is where .
Step 10.1.4
Multiply by .
Step 10.2
Rewrite the problem using and .
Step 11
Combine and .
Step 12
Since is constant with respect to , move out of the integral.
Step 13
Simplify.
Tap for more steps...
Step 13.1
Combine and .
Step 13.2
Cancel the common factor of and .
Tap for more steps...
Step 13.2.1
Factor out of .
Step 13.2.2
Cancel the common factors.
Tap for more steps...
Step 13.2.2.1
Factor out of .
Step 13.2.2.2
Cancel the common factor.
Step 13.2.2.3
Rewrite the expression.
Step 13.2.2.4
Divide by .
Step 14
The integral of with respect to is .
Step 15
Apply the constant rule.
Step 16
Simplify.
Step 17
Replace all occurrences of with .
Step 18
The answer is the antiderivative of the function .