Calculus Examples

Find the Antiderivative (tan(x)+cot(x))^2
(tan(x)+cot(x))2(tan(x)+cot(x))2
Step 1
Write (tan(x)+cot(x))2 as a function.
f(x)=(tan(x)+cot(x))2
Step 2
The function F(x) can be found by finding the indefinite integral of the derivative f(x).
F(x)=f(x)dx
Step 3
Set up the integral to solve.
F(x)=(tan(x)+cot(x))2dx
Step 4
Simplify.
Tap for more steps...
Step 4.1
Rewrite (tan(x)+cot(x))2 as (tan(x)+cot(x))(tan(x)+cot(x)).
(tan(x)+cot(x))(tan(x)+cot(x))dx
Step 4.2
Expand (tan(x)+cot(x))(tan(x)+cot(x)) using the FOIL Method.
Tap for more steps...
Step 4.2.1
Apply the distributive property.
tan(x)(tan(x)+cot(x))+cot(x)(tan(x)+cot(x))dx
Step 4.2.2
Apply the distributive property.
tan(x)tan(x)+tan(x)cot(x)+cot(x)(tan(x)+cot(x))dx
Step 4.2.3
Apply the distributive property.
tan(x)tan(x)+tan(x)cot(x)+cot(x)tan(x)+cot(x)cot(x)dx
tan(x)tan(x)+tan(x)cot(x)+cot(x)tan(x)+cot(x)cot(x)dx
Step 4.3
Simplify and combine like terms.
Tap for more steps...
Step 4.3.1
Simplify each term.
Tap for more steps...
Step 4.3.1.1
Multiply tan(x)tan(x).
Tap for more steps...
Step 4.3.1.1.1
Raise tan(x) to the power of 1.
tan1(x)tan(x)+tan(x)cot(x)+cot(x)tan(x)+cot(x)cot(x)dx
Step 4.3.1.1.2
Raise tan(x) to the power of 1.
tan1(x)tan1(x)+tan(x)cot(x)+cot(x)tan(x)+cot(x)cot(x)dx
Step 4.3.1.1.3
Use the power rule aman=am+n to combine exponents.
tan(x)1+1+tan(x)cot(x)+cot(x)tan(x)+cot(x)cot(x)dx
Step 4.3.1.1.4
Add 1 and 1.
tan2(x)+tan(x)cot(x)+cot(x)tan(x)+cot(x)cot(x)dx
tan2(x)+tan(x)cot(x)+cot(x)tan(x)+cot(x)cot(x)dx
Step 4.3.1.2
Rewrite in terms of sines and cosines, then cancel the common factors.
Tap for more steps...
Step 4.3.1.2.1
Reorder tan(x) and cot(x).
tan2(x)+cot(x)tan(x)+cot(x)tan(x)+cot(x)cot(x)dx
Step 4.3.1.2.2
Rewrite tan(x)cot(x) in terms of sines and cosines.
tan2(x)+cos(x)sin(x)sin(x)cos(x)+cot(x)tan(x)+cot(x)cot(x)dx
Step 4.3.1.2.3
Cancel the common factors.
tan2(x)+1+cot(x)tan(x)+cot(x)cot(x)dx
tan2(x)+1+cot(x)tan(x)+cot(x)cot(x)dx
Step 4.3.1.3
Rewrite in terms of sines and cosines, then cancel the common factors.
Tap for more steps...
Step 4.3.1.3.1
Rewrite cot(x)tan(x) in terms of sines and cosines.
tan2(x)+1+cos(x)sin(x)sin(x)cos(x)+cot(x)cot(x)dx
Step 4.3.1.3.2
Cancel the common factors.
tan2(x)+1+1+cot(x)cot(x)dx
tan2(x)+1+1+cot(x)cot(x)dx
Step 4.3.1.4
Multiply cot(x)cot(x).
Tap for more steps...
Step 4.3.1.4.1
Raise cot(x) to the power of 1.
tan2(x)+1+1+cot1(x)cot(x)dx
Step 4.3.1.4.2
Raise cot(x) to the power of 1.
tan2(x)+1+1+cot1(x)cot1(x)dx
Step 4.3.1.4.3
Use the power rule aman=am+n to combine exponents.
tan2(x)+1+1+cot(x)1+1dx
Step 4.3.1.4.4
Add 1 and 1.
tan2(x)+1+1+cot2(x)dx
tan2(x)+1+1+cot2(x)dx
tan2(x)+1+1+cot2(x)dx
Step 4.3.2
Add 1 and 1.
tan2(x)+2+cot2(x)dx
tan2(x)+2+cot2(x)dx
tan2(x)+2+cot2(x)dx
Step 5
Split the single integral into multiple integrals.
tan2(x)dx+2dx+cot2(x)dx
Step 6
Using the Pythagorean Identity, rewrite tan2(x) as -1+sec2(x).
-1+sec2(x)dx+2dx+cot2(x)dx
Step 7
Split the single integral into multiple integrals.
-1dx+sec2(x)dx+2dx+cot2(x)dx
Step 8
Apply the constant rule.
-x+C+sec2(x)dx+2dx+cot2(x)dx
Step 9
Since the derivative of tan(x) is sec2(x), the integral of sec2(x) is tan(x).
-x+C+tan(x)+C+2dx+cot2(x)dx
Step 10
Apply the constant rule.
-x+C+tan(x)+C+2x+C+cot2(x)dx
Step 11
Using the Pythagorean Identity, rewrite cot2(x) as -1+csc2(x).
-x+C+tan(x)+C+2x+C+-1+csc2(x)dx
Step 12
Split the single integral into multiple integrals.
-x+C+tan(x)+C+2x+C+-1dx+csc2(x)dx
Step 13
Apply the constant rule.
-x+C+tan(x)+C+2x+C-x+C+csc2(x)dx
Step 14
Since the derivative of -cot(x) is csc2(x), the integral of csc2(x) is -cot(x).
-x+C+tan(x)+C+2x+C-x+C-cot(x)+C
Step 15
Simplify.
Tap for more steps...
Step 15.1
Simplify.
Tap for more steps...
Step 15.1.1
Add -x and 2x.
C+tan(x)+C+x+C-x+C-cot(x)+C
Step 15.1.2
Subtract x from x.
C+tan(x)+C+C+0+C-cot(x)+C
Step 15.1.3
Add C+tan(x)+C+C and 0.
C+tan(x)+C+C+C-cot(x)+C
C+tan(x)+C+C+C-cot(x)+C
Step 15.2
Simplify.
tan(x)-cot(x)+C
tan(x)-cot(x)+C
Step 16
The answer is the antiderivative of the function f(x)=(tan(x)+cot(x))2.
F(x)=tan(x)-cot(x)+C
 [x2  12  π  xdx ]