Enter a problem...
Calculus Examples
(tan(x)+cot(x))2(tan(x)+cot(x))2
Step 1
Write (tan(x)+cot(x))2 as a function.
f(x)=(tan(x)+cot(x))2
Step 2
The function F(x) can be found by finding the indefinite integral of the derivative f(x).
F(x)=∫f(x)dx
Step 3
Set up the integral to solve.
F(x)=∫(tan(x)+cot(x))2dx
Step 4
Step 4.1
Rewrite (tan(x)+cot(x))2 as (tan(x)+cot(x))(tan(x)+cot(x)).
∫(tan(x)+cot(x))(tan(x)+cot(x))dx
Step 4.2
Expand (tan(x)+cot(x))(tan(x)+cot(x)) using the FOIL Method.
Step 4.2.1
Apply the distributive property.
∫tan(x)(tan(x)+cot(x))+cot(x)(tan(x)+cot(x))dx
Step 4.2.2
Apply the distributive property.
∫tan(x)tan(x)+tan(x)cot(x)+cot(x)(tan(x)+cot(x))dx
Step 4.2.3
Apply the distributive property.
∫tan(x)tan(x)+tan(x)cot(x)+cot(x)tan(x)+cot(x)cot(x)dx
∫tan(x)tan(x)+tan(x)cot(x)+cot(x)tan(x)+cot(x)cot(x)dx
Step 4.3
Simplify and combine like terms.
Step 4.3.1
Simplify each term.
Step 4.3.1.1
Multiply tan(x)tan(x).
Step 4.3.1.1.1
Raise tan(x) to the power of 1.
∫tan1(x)tan(x)+tan(x)cot(x)+cot(x)tan(x)+cot(x)cot(x)dx
Step 4.3.1.1.2
Raise tan(x) to the power of 1.
∫tan1(x)tan1(x)+tan(x)cot(x)+cot(x)tan(x)+cot(x)cot(x)dx
Step 4.3.1.1.3
Use the power rule aman=am+n to combine exponents.
∫tan(x)1+1+tan(x)cot(x)+cot(x)tan(x)+cot(x)cot(x)dx
Step 4.3.1.1.4
Add 1 and 1.
∫tan2(x)+tan(x)cot(x)+cot(x)tan(x)+cot(x)cot(x)dx
∫tan2(x)+tan(x)cot(x)+cot(x)tan(x)+cot(x)cot(x)dx
Step 4.3.1.2
Rewrite in terms of sines and cosines, then cancel the common factors.
Step 4.3.1.2.1
Reorder tan(x) and cot(x).
∫tan2(x)+cot(x)tan(x)+cot(x)tan(x)+cot(x)cot(x)dx
Step 4.3.1.2.2
Rewrite tan(x)cot(x) in terms of sines and cosines.
∫tan2(x)+cos(x)sin(x)⋅sin(x)cos(x)+cot(x)tan(x)+cot(x)cot(x)dx
Step 4.3.1.2.3
Cancel the common factors.
∫tan2(x)+1+cot(x)tan(x)+cot(x)cot(x)dx
∫tan2(x)+1+cot(x)tan(x)+cot(x)cot(x)dx
Step 4.3.1.3
Rewrite in terms of sines and cosines, then cancel the common factors.
Step 4.3.1.3.1
Rewrite cot(x)tan(x) in terms of sines and cosines.
∫tan2(x)+1+cos(x)sin(x)⋅sin(x)cos(x)+cot(x)cot(x)dx
Step 4.3.1.3.2
Cancel the common factors.
∫tan2(x)+1+1+cot(x)cot(x)dx
∫tan2(x)+1+1+cot(x)cot(x)dx
Step 4.3.1.4
Multiply cot(x)cot(x).
Step 4.3.1.4.1
Raise cot(x) to the power of 1.
∫tan2(x)+1+1+cot1(x)cot(x)dx
Step 4.3.1.4.2
Raise cot(x) to the power of 1.
∫tan2(x)+1+1+cot1(x)cot1(x)dx
Step 4.3.1.4.3
Use the power rule aman=am+n to combine exponents.
∫tan2(x)+1+1+cot(x)1+1dx
Step 4.3.1.4.4
Add 1 and 1.
∫tan2(x)+1+1+cot2(x)dx
∫tan2(x)+1+1+cot2(x)dx
∫tan2(x)+1+1+cot2(x)dx
Step 4.3.2
Add 1 and 1.
∫tan2(x)+2+cot2(x)dx
∫tan2(x)+2+cot2(x)dx
∫tan2(x)+2+cot2(x)dx
Step 5
Split the single integral into multiple integrals.
∫tan2(x)dx+∫2dx+∫cot2(x)dx
Step 6
Using the Pythagorean Identity, rewrite tan2(x) as -1+sec2(x).
∫-1+sec2(x)dx+∫2dx+∫cot2(x)dx
Step 7
Split the single integral into multiple integrals.
∫-1dx+∫sec2(x)dx+∫2dx+∫cot2(x)dx
Step 8
Apply the constant rule.
-x+C+∫sec2(x)dx+∫2dx+∫cot2(x)dx
Step 9
Since the derivative of tan(x) is sec2(x), the integral of sec2(x) is tan(x).
-x+C+tan(x)+C+∫2dx+∫cot2(x)dx
Step 10
Apply the constant rule.
-x+C+tan(x)+C+2x+C+∫cot2(x)dx
Step 11
Using the Pythagorean Identity, rewrite cot2(x) as -1+csc2(x).
-x+C+tan(x)+C+2x+C+∫-1+csc2(x)dx
Step 12
Split the single integral into multiple integrals.
-x+C+tan(x)+C+2x+C+∫-1dx+∫csc2(x)dx
Step 13
Apply the constant rule.
-x+C+tan(x)+C+2x+C-x+C+∫csc2(x)dx
Step 14
Since the derivative of -cot(x) is csc2(x), the integral of csc2(x) is -cot(x).
-x+C+tan(x)+C+2x+C-x+C-cot(x)+C
Step 15
Step 15.1
Simplify.
Step 15.1.1
Add -x and 2x.
C+tan(x)+C+x+C-x+C-cot(x)+C
Step 15.1.2
Subtract x from x.
C+tan(x)+C+C+0+C-cot(x)+C
Step 15.1.3
Add C+tan(x)+C+C and 0.
C+tan(x)+C+C+C-cot(x)+C
C+tan(x)+C+C+C-cot(x)+C
Step 15.2
Simplify.
tan(x)-cot(x)+C
tan(x)-cot(x)+C
Step 16
The answer is the antiderivative of the function f(x)=(tan(x)+cot(x))2.
F(x)=tan(x)-cot(x)+C