Enter a problem...
Calculus Examples
(x+1)(x+2)(x+3)(x+1)(x+2)(x+3)
Step 1
Write (x+1)(x+2)(x+3) as a function.
f(x)=(x+1)(x+2)(x+3)
Step 2
The function F(x) can be found by finding the indefinite integral of the derivative f(x).
F(x)=∫f(x)dx
Step 3
Set up the integral to solve.
F(x)=∫(x+1)(x+2)(x+3)dx
Step 4
Step 4.1
Let u=x+3. Find dudx.
Step 4.1.1
Differentiate x+3.
ddx[x+3]
Step 4.1.2
By the Sum Rule, the derivative of x+3 with respect to x is ddx[x]+ddx[3].
ddx[x]+ddx[3]
Step 4.1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
1+ddx[3]
Step 4.1.4
Since 3 is constant with respect to x, the derivative of 3 with respect to x is 0.
1+0
Step 4.1.5
Add 1 and 0.
1
1
Step 4.2
Rewrite the problem using u and du.
∫(u-3+1)(u-3+2)udu
∫(u-3+1)(u-3+2)udu
Step 5
Step 5.1
Add -3 and 1.
∫(u-2)(u-3+2)udu
Step 5.2
Add -3 and 2.
∫(u-2)(u-1)udu
∫(u-2)(u-1)udu
Step 6
Step 6.1
Apply the distributive property.
∫(u(u-1)-2(u-1))udu
Step 6.2
Apply the distributive property.
∫(u⋅u+u⋅-1-2(u-1))udu
Step 6.3
Apply the distributive property.
∫(u⋅u+u⋅-1-2u-2⋅-1)udu
Step 6.4
Apply the distributive property.
∫(u⋅u+u⋅-1)u+(-2u-2⋅-1)udu
Step 6.5
Apply the distributive property.
∫u⋅u⋅u+u⋅-1u+(-2u-2⋅-1)udu
Step 6.6
Apply the distributive property.
∫u⋅u⋅u+u⋅-1u-2u⋅u-2⋅-1udu
Step 6.7
Reorder u and -1.
∫u⋅u⋅u-1⋅u⋅u-2u⋅u-2⋅-1udu
Step 6.8
Raise u to the power of 1.
∫u1u⋅u-1u⋅u-2u⋅u-2⋅-1udu
Step 6.9
Raise u to the power of 1.
∫u1u1u-1u⋅u-2u⋅u-2⋅-1udu
Step 6.10
Use the power rule aman=am+n to combine exponents.
∫u1+1u-1u⋅u-2u⋅u-2⋅-1udu
Step 6.11
Add 1 and 1.
∫u2u-1u⋅u-2u⋅u-2⋅-1udu
Step 6.12
Raise u to the power of 1.
∫u2u1-1u⋅u-2u⋅u-2⋅-1udu
Step 6.13
Use the power rule aman=am+n to combine exponents.
∫u2+1-1u⋅u-2u⋅u-2⋅-1udu
Step 6.14
Add 2 and 1.
∫u3-1u⋅u-2u⋅u-2⋅-1udu
Step 6.15
Factor out negative.
∫u3-(u⋅u)-2u⋅u-2⋅-1udu
Step 6.16
Raise u to the power of 1.
∫u3-(u1u)-2u⋅u-2⋅-1udu
Step 6.17
Raise u to the power of 1.
∫u3-(u1u1)-2u⋅u-2⋅-1udu
Step 6.18
Use the power rule aman=am+n to combine exponents.
∫u3-u1+1-2u⋅u-2⋅-1udu
Step 6.19
Add 1 and 1.
∫u3-u2-2u⋅u-2⋅-1udu
Step 6.20
Raise u to the power of 1.
∫u3-u2-2(u1u)-2⋅-1udu
Step 6.21
Raise u to the power of 1.
∫u3-u2-2(u1u1)-2⋅-1udu
Step 6.22
Use the power rule aman=am+n to combine exponents.
∫u3-u2-2u1+1-2⋅-1udu
Step 6.23
Add 1 and 1.
∫u3-u2-2u2-2⋅-1udu
Step 6.24
Multiply -2 by -1.
∫u3-u2-2u2+2udu
Step 6.25
Subtract 2u2 from -u2.
∫u3-3u2+2udu
∫u3-3u2+2udu
Step 7
Split the single integral into multiple integrals.
∫u3du+∫-3u2du+∫2udu
Step 8
By the Power Rule, the integral of u3 with respect to u is 14u4.
14u4+C+∫-3u2du+∫2udu
Step 9
Since -3 is constant with respect to u, move -3 out of the integral.
14u4+C-3∫u2du+∫2udu
Step 10
By the Power Rule, the integral of u2 with respect to u is 13u3.
14u4+C-3(13u3+C)+∫2udu
Step 11
Since 2 is constant with respect to u, move 2 out of the integral.
14u4+C-3(13u3+C)+2∫udu
Step 12
By the Power Rule, the integral of u with respect to u is 12u2.
14u4+C-3(13u3+C)+2(12u2+C)
Step 13
Step 13.1
Simplify.
u44-u3+2(12u2)+C
Step 13.2
Simplify.
Step 13.2.1
Combine 12 and u2.
u44-u3+2u22+C
Step 13.2.2
Combine 2 and u22.
u44-u3+2u22+C
Step 13.2.3
Cancel the common factor of 2.
Step 13.2.3.1
Cancel the common factor.
u44-u3+2u22+C
Step 13.2.3.2
Divide u2 by 1.
u44-u3+u2+C
u44-u3+u2+C
u44-u3+u2+C
u44-u3+u2+C
Step 14
Replace all occurrences of u with x+3.
(x+3)44-(x+3)3+(x+3)2+C
Step 15
Reorder terms.
14(x+3)4-(x+3)3+(x+3)2+C
Step 16
The answer is the antiderivative of the function f(x)=(x+1)(x+2)(x+3).
F(x)=14(x+3)4-(x+3)3+(x+3)2+C