Calculus Examples

Find the Derivative - d/dx ((x+1)^2)/(x^2+8)
Step 1
Differentiate using the Quotient Rule which states that is where and .
Step 2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.1
To apply the Chain Rule, set as .
Step 2.2
Differentiate using the Power Rule which states that is where .
Step 2.3
Replace all occurrences of with .
Step 3
Differentiate.
Tap for more steps...
Step 3.1
Move to the left of .
Step 3.2
By the Sum Rule, the derivative of with respect to is .
Step 3.3
Differentiate using the Power Rule which states that is where .
Step 3.4
Since is constant with respect to , the derivative of with respect to is .
Step 3.5
Simplify the expression.
Tap for more steps...
Step 3.5.1
Add and .
Step 3.5.2
Multiply by .
Step 3.6
By the Sum Rule, the derivative of with respect to is .
Step 3.7
Differentiate using the Power Rule which states that is where .
Step 3.8
Since is constant with respect to , the derivative of with respect to is .
Step 3.9
Simplify the expression.
Tap for more steps...
Step 3.9.1
Add and .
Step 3.9.2
Multiply by .
Step 4
Simplify.
Tap for more steps...
Step 4.1
Apply the distributive property.
Step 4.2
Simplify the numerator.
Tap for more steps...
Step 4.2.1
Simplify each term.
Tap for more steps...
Step 4.2.1.1
Multiply by .
Step 4.2.1.2
Expand using the FOIL Method.
Tap for more steps...
Step 4.2.1.2.1
Apply the distributive property.
Step 4.2.1.2.2
Apply the distributive property.
Step 4.2.1.2.3
Apply the distributive property.
Step 4.2.1.3
Simplify each term.
Tap for more steps...
Step 4.2.1.3.1
Multiply by by adding the exponents.
Tap for more steps...
Step 4.2.1.3.1.1
Move .
Step 4.2.1.3.1.2
Multiply by .
Tap for more steps...
Step 4.2.1.3.1.2.1
Raise to the power of .
Step 4.2.1.3.1.2.2
Use the power rule to combine exponents.
Step 4.2.1.3.1.3
Add and .
Step 4.2.1.3.2
Multiply by .
Step 4.2.1.3.3
Multiply by .
Step 4.2.1.4
Rewrite as .
Step 4.2.1.5
Expand using the FOIL Method.
Tap for more steps...
Step 4.2.1.5.1
Apply the distributive property.
Step 4.2.1.5.2
Apply the distributive property.
Step 4.2.1.5.3
Apply the distributive property.
Step 4.2.1.6
Simplify and combine like terms.
Tap for more steps...
Step 4.2.1.6.1
Simplify each term.
Tap for more steps...
Step 4.2.1.6.1.1
Multiply by .
Step 4.2.1.6.1.2
Multiply by .
Step 4.2.1.6.1.3
Multiply by .
Step 4.2.1.6.1.4
Multiply by .
Step 4.2.1.6.2
Add and .
Step 4.2.1.7
Apply the distributive property.
Step 4.2.1.8
Simplify.
Tap for more steps...
Step 4.2.1.8.1
Multiply by .
Step 4.2.1.8.2
Multiply by .
Step 4.2.1.9
Apply the distributive property.
Step 4.2.1.10
Simplify.
Tap for more steps...
Step 4.2.1.10.1
Multiply by by adding the exponents.
Tap for more steps...
Step 4.2.1.10.1.1
Move .
Step 4.2.1.10.1.2
Multiply by .
Tap for more steps...
Step 4.2.1.10.1.2.1
Raise to the power of .
Step 4.2.1.10.1.2.2
Use the power rule to combine exponents.
Step 4.2.1.10.1.3
Add and .
Step 4.2.1.10.2
Multiply by by adding the exponents.
Tap for more steps...
Step 4.2.1.10.2.1
Move .
Step 4.2.1.10.2.2
Multiply by .
Step 4.2.2
Combine the opposite terms in .
Tap for more steps...
Step 4.2.2.1
Subtract from .
Step 4.2.2.2
Add and .
Step 4.2.3
Subtract from .
Step 4.2.4
Subtract from .
Step 4.3
Simplify the numerator.
Tap for more steps...
Step 4.3.1
Factor out of .
Tap for more steps...
Step 4.3.1.1
Factor out of .
Step 4.3.1.2
Factor out of .
Step 4.3.1.3
Factor out of .
Step 4.3.1.4
Factor out of .
Step 4.3.1.5
Factor out of .
Step 4.3.2
Factor by grouping.
Tap for more steps...
Step 4.3.2.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Tap for more steps...
Step 4.3.2.1.1
Factor out of .
Step 4.3.2.1.2
Rewrite as plus
Step 4.3.2.1.3
Apply the distributive property.
Step 4.3.2.2
Factor out the greatest common factor from each group.
Tap for more steps...
Step 4.3.2.2.1
Group the first two terms and the last two terms.
Step 4.3.2.2.2
Factor out the greatest common factor (GCF) from each group.
Step 4.3.2.3
Factor the polynomial by factoring out the greatest common factor, .
Step 4.4
Factor out of .
Step 4.5
Rewrite as .
Step 4.6
Factor out of .
Step 4.7
Rewrite as .
Step 4.8
Move the negative in front of the fraction.
Step 4.9
Reorder factors in .