Enter a problem...
Calculus Examples
Step 1
Step 1.1
Let . Find .
Step 1.1.1
Differentiate .
Step 1.1.2
The derivative of with respect to is .
Step 1.2
Substitute the lower limit in for in .
Step 1.3
The exact value of is .
Step 1.4
Substitute the upper limit in for in .
Step 1.5
The exact value of is .
Step 1.6
The values found for and will be used to evaluate the definite integral.
Step 1.7
Rewrite the problem using , , and the new limits of integration.
Step 2
Move the negative in front of the fraction.
Step 3
Since is constant with respect to , move out of the integral.
Step 4
Rewrite as .
Step 5
The integral of with respect to is .
Step 6
Evaluate at and at .
Step 7
Step 7.1
Simplify each term.
Step 7.1.1
The exact value of is .
Step 7.1.2
The exact value of is .
Step 7.2
Subtract from .
Step 7.3
Multiply .
Step 7.3.1
Multiply by .
Step 7.3.2
Multiply by .
Step 8
The result can be shown in multiple forms.
Exact Form:
Decimal Form: