Enter a problem...
Calculus Examples
∫π40sec4(θ)tan4(θ)dθ∫π40sec4(θ)tan4(θ)dθ
Step 1
Step 1.1
Rewrite 44 as 22 plus 22
∫π40sec(θ)2+2tan4(θ)dθ∫π40sec(θ)2+2tan4(θ)dθ
Step 1.2
Rewrite sec(θ)2+2sec(θ)2+2 as sec2(θ)sec2(θ)sec2(θ)sec2(θ).
∫π40sec2(θ)sec2(θ)tan4(θ)dθ∫π40sec2(θ)sec2(θ)tan4(θ)dθ
∫π40sec2(θ)sec2(θ)tan4(θ)dθ∫π40sec2(θ)sec2(θ)tan4(θ)dθ
Step 2
Using the Pythagorean Identity, rewrite sec2(θ)sec2(θ) as 1+tan2(θ)1+tan2(θ).
∫π40(1+tan2(θ))sec2(θ)tan4(θ)dθ∫π40(1+tan2(θ))sec2(θ)tan4(θ)dθ
Step 3
Step 3.1
Let u=tan(θ)u=tan(θ). Find dudθdudθ.
Step 3.1.1
Differentiate tan(θ)tan(θ).
ddθ[tan(θ)]ddθ[tan(θ)]
Step 3.1.2
The derivative of tan(θ)tan(θ) with respect to θθ is sec2(θ)sec2(θ).
sec2(θ)sec2(θ)
sec2(θ)sec2(θ)
Step 3.2
Substitute the lower limit in for θθ in u=tan(θ)u=tan(θ).
ulower=tan(0)ulower=tan(0)
Step 3.3
The exact value of tan(0)tan(0) is 00.
ulower=0ulower=0
Step 3.4
Substitute the upper limit in for θθ in u=tan(θ)u=tan(θ).
uupper=tan(π4)uupper=tan(π4)
Step 3.5
The exact value of tan(π4)tan(π4) is 11.
uupper=1uupper=1
Step 3.6
The values found for ulowerulower and uupperuupper will be used to evaluate the definite integral.
ulower=0ulower=0
uupper=1uupper=1
Step 3.7
Rewrite the problem using uu, dudu, and the new limits of integration.
∫10(1+u2)u4du∫10(1+u2)u4du
∫10(1+u2)u4du∫10(1+u2)u4du
Step 4
Multiply (1+u2)u4(1+u2)u4.
∫101u4+u2u4du∫101u4+u2u4du
Step 5
Step 5.1
Multiply u4u4 by 11.
∫10u4+u2u4du∫10u4+u2u4du
Step 5.2
Multiply u2u2 by u4u4 by adding the exponents.
Step 5.2.1
Use the power rule aman=am+naman=am+n to combine exponents.
∫10u4+u2+4du∫10u4+u2+4du
Step 5.2.2
Add 22 and 44.
∫10u4+u6du∫10u4+u6du
∫10u4+u6du∫10u4+u6du
∫10u4+u6du∫10u4+u6du
Step 6
Split the single integral into multiple integrals.
∫10u4du+∫10u6du∫10u4du+∫10u6du
Step 7
By the Power Rule, the integral of u4u4 with respect to uu is 15u515u5.
15u5]10+∫10u6du15u5]10+∫10u6du
Step 8
By the Power Rule, the integral of u6u6 with respect to uu is 17u717u7.
15u5]10+17u7]1015u5]10+17u7]10
Step 9
Combine 15u5]1015u5]10 and 17u7]1017u7]10.
15u5+17u7]1015u5+17u7]10
Step 10
Step 10.1
Evaluate 15u5+17u715u5+17u7 at 11 and at 00.
(15⋅15+17⋅17)-(15⋅05+17⋅07)(15⋅15+17⋅17)−(15⋅05+17⋅07)
Step 10.2
Simplify.
Step 10.2.1
One to any power is one.
15⋅1+17⋅17-(15⋅05+17⋅07)
Step 10.2.2
Multiply 15 by 1.
15+17⋅17-(15⋅05+17⋅07)
Step 10.2.3
One to any power is one.
15+17⋅1-(15⋅05+17⋅07)
Step 10.2.4
Multiply 17 by 1.
15+17-(15⋅05+17⋅07)
Step 10.2.5
To write 15 as a fraction with a common denominator, multiply by 77.
15⋅77+17-(15⋅05+17⋅07)
Step 10.2.6
To write 17 as a fraction with a common denominator, multiply by 55.
15⋅77+17⋅55-(15⋅05+17⋅07)
Step 10.2.7
Write each expression with a common denominator of 35, by multiplying each by an appropriate factor of 1.
Step 10.2.7.1
Multiply 15 by 77.
75⋅7+17⋅55-(15⋅05+17⋅07)
Step 10.2.7.2
Multiply 5 by 7.
735+17⋅55-(15⋅05+17⋅07)
Step 10.2.7.3
Multiply 17 by 55.
735+57⋅5-(15⋅05+17⋅07)
Step 10.2.7.4
Multiply 7 by 5.
735+535-(15⋅05+17⋅07)
735+535-(15⋅05+17⋅07)
Step 10.2.8
Combine the numerators over the common denominator.
7+535-(15⋅05+17⋅07)
Step 10.2.9
Add 7 and 5.
1235-(15⋅05+17⋅07)
Step 10.2.10
Raising 0 to any positive power yields 0.
1235-(15⋅0+17⋅07)
Step 10.2.11
Multiply 15 by 0.
1235-(0+17⋅07)
Step 10.2.12
Raising 0 to any positive power yields 0.
1235-(0+17⋅0)
Step 10.2.13
Multiply 17 by 0.
1235-(0+0)
Step 10.2.14
Add 0 and 0.
1235-0
Step 10.2.15
Multiply -1 by 0.
1235+0
Step 10.2.16
Add 1235 and 0.
1235
1235
1235
Step 11
The result can be shown in multiple forms.
Exact Form:
1235
Decimal Form:
0.3‾428571