Enter a problem...
Calculus Examples
Step 1
Write as a function.
Step 2
The function can be found by finding the indefinite integral of the derivative .
Step 3
Set up the integral to solve.
Step 4
Integrate by parts using the formula , where and .
Step 5
Combine and .
Step 6
Step 6.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+ | + |
Step 6.2
Divide the highest order term in the dividend by the highest order term in divisor .
+ | + |
Step 6.3
Multiply the new quotient term by the divisor.
+ | + | ||||||
+ | + |
Step 6.4
The expression needs to be subtracted from the dividend, so change all the signs in
+ | + | ||||||
- | - |
Step 6.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | + | ||||||
- | - | ||||||
- |
Step 6.6
The final answer is the quotient plus the remainder over the divisor.
Step 7
Split the single integral into multiple integrals.
Step 8
Apply the constant rule.
Step 9
Since is constant with respect to , move out of the integral.
Step 10
Since is constant with respect to , move out of the integral.
Step 11
Multiply by .
Step 12
Step 12.1
Let . Find .
Step 12.1.1
Differentiate .
Step 12.1.2
By the Sum Rule, the derivative of with respect to is .
Step 12.1.3
Differentiate using the Power Rule which states that is where .
Step 12.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 12.1.5
Add and .
Step 12.2
Rewrite the problem using and .
Step 13
The integral of with respect to is .
Step 14
Simplify.
Step 15
Replace all occurrences of with .
Step 16
The answer is the antiderivative of the function .