Enter a problem...
Calculus Examples
∫∞1exdx∫∞1exdx
Step 1
Write the integral as a limit as tt approaches ∞∞.
limt→∞∫t1exdxlimt→∞∫t1exdx
Step 2
The integral of exex with respect to xx is exex.
limt→∞ex]t1limt→∞ex]t1
Step 3
Step 3.1
Evaluate exex at tt and at 11.
limt→∞(et)-e1limt→∞(et)−e1
Step 3.2
Simplify.
limt→∞et-elimt→∞et−e
limt→∞et-elimt→∞et−e
Step 4
Step 4.1
Split the limit using the Sum of Limits Rule on the limit as tt approaches ∞∞.
limt→∞et-limt→∞elimt→∞et−limt→∞e
Step 4.2
Since the exponent tt approaches ∞∞, the quantity etet approaches ∞∞.
∞-limt→∞e∞−limt→∞e
Step 4.3
Evaluate the limit of ee which is constant as tt approaches ∞∞.
∞-e∞−e
Step 4.4
Infinity plus or minus a number is infinity.
∞∞
∞∞