Enter a problem...
Calculus Examples
∫π20cos11(x)sin5(x)dx
Step 1
Factor out cos10(x).
∫π20cos10(x)cos(x)sin5(x)dx
Step 2
Step 2.1
Factor 2 out of 10.
∫π20cos(x)2(5)cos(x)sin5(x)dx
Step 2.2
Rewrite cos(x)2(5) as exponentiation.
∫π20(cos2(x))5cos(x)sin5(x)dx
∫π20(cos2(x))5cos(x)sin5(x)dx
Step 3
Using the Pythagorean Identity, rewrite cos2(x) as 1-sin2(x).
∫π20(1-sin2(x))5cos(x)sin5(x)dx
Step 4
Step 4.1
Let u1=sin(x). Find du1dx.
Step 4.1.1
Differentiate sin(x).
ddx[sin(x)]
Step 4.1.2
The derivative of sin(x) with respect to x is cos(x).
cos(x)
cos(x)
Step 4.2
Substitute the lower limit in for x in u1=sin(x).
ulower=sin(0)
Step 4.3
The exact value of sin(0) is 0.
ulower=0
Step 4.4
Substitute the upper limit in for x in u1=sin(x).
uupper=sin(π2)
Step 4.5
The exact value of sin(π2) is 1.
uupper=1
Step 4.6
The values found for ulower and uupper will be used to evaluate the definite integral.
ulower=0
uupper=1
Step 4.7
Rewrite the problem using u1, du1, and the new limits of integration.
∫10(1-u12)5u15du1
∫10(1-u12)5u15du1
Step 5
Step 5.1
Let u2=1-u12. Find du2du1.
Step 5.1.1
Differentiate 1-u12.
ddu1[1-u12]
Step 5.1.2
Differentiate.
Step 5.1.2.1
By the Sum Rule, the derivative of 1-u12 with respect to u1 is ddu1[1]+ddu1[-u12].
ddu1[1]+ddu1[-u12]
Step 5.1.2.2
Since 1 is constant with respect to u1, the derivative of 1 with respect to u1 is 0.
0+ddu1[-u12]
0+ddu1[-u12]
Step 5.1.3
Evaluate ddu1[-u12].
Step 5.1.3.1
Since -1 is constant with respect to u1, the derivative of -u12 with respect to u1 is -ddu1[u12].
0-ddu1[u12]
Step 5.1.3.2
Differentiate using the Power Rule which states that ddu1[u1n] is nu1n-1 where n=2.
0-(2u1)
Step 5.1.3.3
Multiply 2 by -1.
0-2u1
0-2u1
Step 5.1.4
Subtract 2u1 from 0.
-2u1
-2u1
Step 5.2
Substitute the lower limit in for u1 in u2=1-u12.
ulower=1-02
Step 5.3
Simplify.
Step 5.3.1
Simplify each term.
Step 5.3.1.1
Raising 0 to any positive power yields 0.
ulower=1-0
Step 5.3.1.2
Multiply -1 by 0.
ulower=1+0
ulower=1+0
Step 5.3.2
Add 1 and 0.
ulower=1
ulower=1
Step 5.4
Substitute the upper limit in for u1 in u2=1-u12.
uupper=1-12
Step 5.5
Simplify.
Step 5.5.1
Simplify each term.
Step 5.5.1.1
One to any power is one.
uupper=1-1⋅1
Step 5.5.1.2
Multiply -1 by 1.
uupper=1-1
uupper=1-1
Step 5.5.2
Subtract 1 from 1.
uupper=0
uupper=0
Step 5.6
The values found for ulower and uupper will be used to evaluate the definite integral.
ulower=1
uupper=0
Step 5.7
Rewrite the problem using u2, du2, and the new limits of integration.
∫01u25√-u2+141-2du2
∫01u25√-u2+141-2du2
Step 6
Step 6.1
Rewrite √-u2+14 as (-u2+1)2.
Step 6.1.1
Use n√ax=axn to rewrite √-u2+1 as (-u2+1)12.
∫01u25((-u2+1)12)41-2du2
Step 6.1.2
Apply the power rule and multiply exponents, (am)n=amn.
∫01u25(-u2+1)12⋅41-2du2
Step 6.1.3
Combine 12 and 4.
∫01u25(-u2+1)421-2du2
Step 6.1.4
Cancel the common factor of 4 and 2.
Step 6.1.4.1
Factor 2 out of 4.
∫01u25(-u2+1)2⋅221-2du2
Step 6.1.4.2
Cancel the common factors.
Step 6.1.4.2.1
Factor 2 out of 2.
∫01u25(-u2+1)2⋅22(1)1-2du2
Step 6.1.4.2.2
Cancel the common factor.
∫01u25(-u2+1)2⋅22⋅11-2du2
Step 6.1.4.2.3
Rewrite the expression.
∫01u25(-u2+1)211-2du2
Step 6.1.4.2.4
Divide 2 by 1.
∫01u25(-u2+1)21-2du2
∫01u25(-u2+1)21-2du2
∫01u25(-u2+1)21-2du2
∫01u25(-u2+1)21-2du2
Step 6.2
Move the negative in front of the fraction.
∫01u25(-u2+1)2(-12)du2
Step 6.3
Combine u25 and 12.
∫01(-u2+1)2(-u252)du2
Step 6.4
Combine (-u2+1)2 and u252.
∫01-(-u2+1)2u252du2
∫01-(-u2+1)2u252du2
Step 7
Since -1 is constant with respect to u2, move -1 out of the integral.
-∫01(-u2+1)2u252du2
Step 8
Since 12 is constant with respect to u2, move 12 out of the integral.
-(12∫01(-u2+1)2u25du2)
Step 9
Step 9.1
Rewrite (-u2+1)2 as (-u2+1)(-u2+1).
-12∫01(-u2+1)(-u2+1)u25du2
Step 9.2
Apply the distributive property.
-12∫01(-u2(-u2+1)+1(-u2+1))u25du2
Step 9.3
Apply the distributive property.
-12∫01(-u2(-u2)-u2⋅1+1(-u2+1))u25du2
Step 9.4
Apply the distributive property.
-12∫01(-u2(-u2)-u2⋅1+1(-u2)+1⋅1)u25du2
Step 9.5
Apply the distributive property.
-12∫01(-u2(-u2)-u2⋅1)u25+(1(-u2)+1⋅1)u25du2
Step 9.6
Apply the distributive property.
-12∫01-u2(-u2)u25-u2⋅1u25+(1(-u2)+1⋅1)u25du2
Step 9.7
Apply the distributive property.
-12∫01-u2(-u2)u25-u2⋅1u25+1(-u2)u25+1⋅1u25du2
Step 9.8
Move u2.
-12∫01-1⋅-1u2⋅u2⋅u25-u2⋅1u25+1(-u2)u25+1⋅1u25du2
Step 9.9
Move u2.
-12∫01-1⋅-1u2⋅u2⋅u25-1⋅1u2⋅u25+1(-u2)u25+1⋅1u25du2
Step 9.10
Multiply -1 by -1.
-12∫011u2⋅u2⋅u25-1⋅1u2⋅u25+1⋅-1u2⋅u25+1⋅1u25du2
Step 9.11
Multiply u2 by 1.
-12∫01u2⋅u2⋅u25-1⋅1u2⋅u25+1⋅-1u2⋅u25+1⋅1u25du2
Step 9.12
Raise u2 to the power of 1.
-12∫01u21u2⋅u25-1⋅1u2⋅u25+1⋅-1u2⋅u25+1⋅1u25du2
Step 9.13
Raise u2 to the power of 1.
-12∫01u21u21u25-1⋅1u2⋅u25+1⋅-1u2⋅u25+1⋅1u25du2
Step 9.14
Use the power rule aman=am+n to combine exponents.
-12∫01u21+1u25-1⋅1u2⋅u25+1⋅-1u2⋅u25+1⋅1u25du2
Step 9.15
Add 1 and 1.
-12∫01u22u25-1⋅1u2⋅u25+1⋅-1u2⋅u25+1⋅1u25du2
Step 9.16
Use the power rule aman=am+n to combine exponents.
-12∫01u22+5-1⋅1u2⋅u25+1⋅-1u2⋅u25+1⋅1u25du2
Step 9.17
Add 2 and 5.
-12∫01u27-1⋅1u2⋅u25+1⋅-1u2⋅u25+1⋅1u25du2
Step 9.18
Multiply -1 by 1.
-12∫01u27-u2⋅u25+1⋅-1u2⋅u25+1⋅1u25du2
Step 9.19
Factor out negative.
-12∫01u27-(u2⋅u25)+1⋅-1u2⋅u25+1⋅1u25du2
Step 9.20
Raise u2 to the power of 1.
-12∫01u27-(u21u25)+1⋅-1u2⋅u25+1⋅1u25du2
Step 9.21
Use the power rule aman=am+n to combine exponents.
-12∫01u27-u21+5+1⋅-1u2⋅u25+1⋅1u25du2
Step 9.22
Add 1 and 5.
-12∫01u27-u26+1⋅-1u2⋅u25+1⋅1u25du2
Step 9.23
Multiply -1 by 1.
-12∫01u27-u26-u2⋅u25+1⋅1u25du2
Step 9.24
Factor out negative.
-12∫01u27-u26-(u2⋅u25)+1⋅1u25du2
Step 9.25
Raise u2 to the power of 1.
-12∫01u27-u26-(u21u25)+1⋅1u25du2
Step 9.26
Use the power rule aman=am+n to combine exponents.
-12∫01u27-u26-u21+5+1⋅1u25du2
Step 9.27
Add 1 and 5.
-12∫01u27-u26-u26+1⋅1u25du2
Step 9.28
Multiply 1 by 1.
-12∫01u27-u26-u26+1u25du2
Step 9.29
Multiply u25 by 1.
-12∫01u27-u26-u26+u25du2
Step 9.30
Subtract u26 from -u26.
-12∫01u27-2u26+u25du2
-12∫01u27-2u26+u25du2
Step 10
Split the single integral into multiple integrals.
-12(∫01u27du2+∫01-2u26du2+∫01u25du2)
Step 11
By the Power Rule, the integral of u27 with respect to u2 is 18u28.
-12(18u28]01+∫01-2u26du2+∫01u25du2)
Step 12
Since -2 is constant with respect to u2, move -2 out of the integral.
-12(18u28]01-2∫01u26du2+∫01u25du2)
Step 13
By the Power Rule, the integral of u26 with respect to u2 is 17u27.
-12(18u28]01-2(17u27]01)+∫01u25du2)
Step 14
Step 14.1
Combine 17 and u27.
-12(18u28]01-2(u277]01)+∫01u25du2)
Step 14.2
Combine 18 and u28.
-12(u288]01-2(u277]01)+∫01u25du2)
-12(u288]01-2(u277]01)+∫01u25du2)
Step 15
By the Power Rule, the integral of u25 with respect to u2 is 16u26.
-12(u288]01-2(u277]01)+16u26]01)
Step 16
Step 16.1
Combine u288]01 and 16u26]01.
-12(u288+16u26]01-2(u277]01))
Step 16.2
Combine 16 and u26.
-12(u288+u266]01-2(u277]01))
-12(u288+u266]01-2(u277]01))
Step 17
Step 17.1
Evaluate u288+u266 at 0 and at 1.
-12((088+066)-(188+166)-2(u277]01))
Step 17.2
Evaluate u277 at 0 and at 1.
-12((088+066)-(188+166)-2((077)-177))
Step 17.3
Simplify.
Step 17.3.1
Raising 0 to any positive power yields 0.
-12(08+066-(188+166)-2((077)-177))
Step 17.3.2
Cancel the common factor of 0 and 8.
Step 17.3.2.1
Factor 8 out of 0.
-12(8(0)8+066-(188+166)-2((077)-177))
Step 17.3.2.2
Cancel the common factors.
Step 17.3.2.2.1
Factor 8 out of 8.
-12(8⋅08⋅1+066-(188+166)-2((077)-177))
Step 17.3.2.2.2
Cancel the common factor.
-12(8⋅08⋅1+066-(188+166)-2((077)-177))
Step 17.3.2.2.3
Rewrite the expression.
-12(01+066-(188+166)-2((077)-177))
Step 17.3.2.2.4
Divide 0 by 1.
-12(0+066-(188+166)-2((077)-177))
-12(0+066-(188+166)-2((077)-177))
-12(0+066-(188+166)-2((077)-177))
Step 17.3.3
Raising 0 to any positive power yields 0.
-12(0+06-(188+166)-2((077)-177))
Step 17.3.4
Cancel the common factor of 0 and 6.
Step 17.3.4.1
Factor 6 out of 0.
-12(0+6(0)6-(188+166)-2((077)-177))
Step 17.3.4.2
Cancel the common factors.
Step 17.3.4.2.1
Factor 6 out of 6.
-12(0+6⋅06⋅1-(188+166)-2((077)-177))
Step 17.3.4.2.2
Cancel the common factor.
-12(0+6⋅06⋅1-(188+166)-2((077)-177))
Step 17.3.4.2.3
Rewrite the expression.
-12(0+01-(188+166)-2((077)-177))
Step 17.3.4.2.4
Divide 0 by 1.
-12(0+0-(188+166)-2((077)-177))
-12(0+0-(188+166)-2((077)-177))
-12(0+0-(188+166)-2((077)-177))
Step 17.3.5
Add 0 and 0.
-12(0-(188+166)-2((077)-177))
Step 17.3.6
One to any power is one.
-12(0-(18+166)-2((077)-177))
Step 17.3.7
One to any power is one.
-12(0-(18+16)-2((077)-177))
Step 17.3.8
To write 18 as a fraction with a common denominator, multiply by 33.
-12(0-(18⋅33+16)-2((077)-177))
Step 17.3.9
To write 16 as a fraction with a common denominator, multiply by 44.
-12(0-(18⋅33+16⋅44)-2((077)-177))
Step 17.3.10
Write each expression with a common denominator of 24, by multiplying each by an appropriate factor of 1.
Step 17.3.10.1
Multiply 18 by 33.
-12(0-(38⋅3+16⋅44)-2((077)-177))
Step 17.3.10.2
Multiply 8 by 3.
-12(0-(324+16⋅44)-2((077)-177))
Step 17.3.10.3
Multiply 16 by 44.
-12(0-(324+46⋅4)-2((077)-177))
Step 17.3.10.4
Multiply 6 by 4.
-12(0-(324+424)-2((077)-177))
-12(0-(324+424)-2((077)-177))
Step 17.3.11
Combine the numerators over the common denominator.
-12(0-3+424-2((077)-177))
Step 17.3.12
Add 3 and 4.
-12(0-724-2((077)-177))
Step 17.3.13
Subtract 724 from 0.
-12(-724-2((077)-177))
Step 17.3.14
Raising 0 to any positive power yields 0.
-12(-724-2(07-177))
Step 17.3.15
Cancel the common factor of 0 and 7.
Step 17.3.15.1
Factor 7 out of 0.
-12(-724-2(7(0)7-177))
Step 17.3.15.2
Cancel the common factors.
Step 17.3.15.2.1
Factor 7 out of 7.
-12(-724-2(7⋅07⋅1-177))
Step 17.3.15.2.2
Cancel the common factor.
-12(-724-2(7⋅07⋅1-177))
Step 17.3.15.2.3
Rewrite the expression.
-12(-724-2(01-177))
Step 17.3.15.2.4
Divide 0 by 1.
-12(-724-2(0-177))
-12(-724-2(0-177))
-12(-724-2(0-177))
Step 17.3.16
One to any power is one.
-12(-724-2(0-17))
Step 17.3.17
Subtract 17 from 0.
-12(-724-2(-17))
Step 17.3.18
Multiply -1 by -2.
-12(-724+2(17))
Step 17.3.19
Combine 2 and 17.
-12(-724+27)
Step 17.3.20
To write -724 as a fraction with a common denominator, multiply by 77.
-12(-724⋅77+27)
Step 17.3.21
To write 27 as a fraction with a common denominator, multiply by 2424.
-12(-724⋅77+27⋅2424)
Step 17.3.22
Write each expression with a common denominator of 168, by multiplying each by an appropriate factor of 1.
Step 17.3.22.1
Multiply 724 by 77.
-12(-7⋅724⋅7+27⋅2424)
Step 17.3.22.2
Multiply 24 by 7.
-12(-7⋅7168+27⋅2424)
Step 17.3.22.3
Multiply 27 by 2424.
-12(-7⋅7168+2⋅247⋅24)
Step 17.3.22.4
Multiply 7 by 24.
-12(-7⋅7168+2⋅24168)
-12(-7⋅7168+2⋅24168)
Step 17.3.23
Combine the numerators over the common denominator.
-12⋅-7⋅7+2⋅24168
Step 17.3.24
Simplify the numerator.
Step 17.3.24.1
Multiply -7 by 7.
-12⋅-49+2⋅24168
Step 17.3.24.2
Multiply 2 by 24.
-12⋅-49+48168
Step 17.3.24.3
Add -49 and 48.
-12⋅-1168
-12⋅-1168
Step 17.3.25
Move the negative in front of the fraction.
-12(-1168)
Step 17.3.26
Multiply -1 by -1.
1(12)1168
Step 17.3.27
Multiply 12 by 1.
12⋅1168
Step 17.3.28
Multiply 12 by 1168.
12⋅168
Step 17.3.29
Multiply 2 by 168.
1336
1336
1336
Step 18
The result can be shown in multiple forms.
Exact Form:
1336
Decimal Form:
0.00297619…