Calculus Examples

Evaluate the Integral integral of 2x^2(2x+1)(x-3) with respect to x
2x2(2x+1)(x-3)dx
Step 1
Since 2 is constant with respect to x, move 2 out of the integral.
2(x2(2x+1))(x-3)dx
Step 2
Let u1=x-3. Then du1=dx. Rewrite using u1 and du1.
Tap for more steps...
Step 2.1
Let u1=x-3. Find du1dx.
Tap for more steps...
Step 2.1.1
Differentiate x-3.
ddx[x-3]
Step 2.1.2
By the Sum Rule, the derivative of x-3 with respect to x is ddx[x]+ddx[-3].
ddx[x]+ddx[-3]
Step 2.1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
1+ddx[-3]
Step 2.1.4
Since -3 is constant with respect to x, the derivative of -3 with respect to x is 0.
1+0
Step 2.1.5
Add 1 and 0.
1
1
Step 2.2
Rewrite the problem using u1 and du1.
2(u1+3)2(2(u1+3)+1)u1du1
2(u1+3)2(2(u1+3)+1)u1du1
Step 3
Let u2=u1+3. Then du2=du1. Rewrite using u2 and du2.
Tap for more steps...
Step 3.1
Let u2=u1+3. Find du2du1.
Tap for more steps...
Step 3.1.1
Differentiate u1+3.
ddu1[u1+3]
Step 3.1.2
By the Sum Rule, the derivative of u1+3 with respect to u1 is ddu1[u1]+ddu1[3].
ddu1[u1]+ddu1[3]
Step 3.1.3
Differentiate using the Power Rule which states that ddu1[u1n] is nu1n-1 where n=1.
1+ddu1[3]
Step 3.1.4
Since 3 is constant with respect to u1, the derivative of 3 with respect to u1 is 0.
1+0
Step 3.1.5
Add 1 and 0.
1
1
Step 3.2
Rewrite the problem using u2 and du2.
2u22(2u2+1)(u2-3)du2
2u22(2u2+1)(u2-3)du2
Step 4
Let u3=u2-3. Then du3=du2. Rewrite using u3 and du3.
Tap for more steps...
Step 4.1
Let u3=u2-3. Find du3du2.
Tap for more steps...
Step 4.1.1
Differentiate u2-3.
ddu2[u2-3]
Step 4.1.2
By the Sum Rule, the derivative of u2-3 with respect to u2 is ddu2[u2]+ddu2[-3].
ddu2[u2]+ddu2[-3]
Step 4.1.3
Differentiate using the Power Rule which states that ddu2[u2n] is nu2n-1 where n=1.
1+ddu2[-3]
Step 4.1.4
Since -3 is constant with respect to u2, the derivative of -3 with respect to u2 is 0.
1+0
Step 4.1.5
Add 1 and 0.
1
1
Step 4.2
Rewrite the problem using u3 and du3.
2(u3+3)2(2(u3+3)+1)u3du3
2(u3+3)2(2(u3+3)+1)u3du3
Step 5
Simplify.
Tap for more steps...
Step 5.1
Rewrite (u3+3)2 as (u3+3)(u3+3).
2(u3+3)(u3+3)(2(u3+3)+1)u3du3
Step 5.2
Apply the distributive property.
2(u3(u3+3)+3(u3+3))(2(u3+3)+1)u3du3
Step 5.3
Apply the distributive property.
2(u3u3+u33+3(u3+3))(2(u3+3)+1)u3du3
Step 5.4
Apply the distributive property.
2(u3u3+u33+3u3+33)(2(u3+3)+1)u3du3
Step 5.5
Apply the distributive property.
2(u3u3+u33+3u3+33)(2u3+23+1)u3du3
Step 5.6
Apply the distributive property.
2((u3u3+u33)(2u3+23+1)+(3u3+33)(2u3+23+1))u3du3
Step 5.7
Apply the distributive property.
2(u3u3(2u3+23+1)+u33(2u3+23+1)+(3u3+33)(2u3+23+1))u3du3
Step 5.8
Apply the distributive property.
2(u3u3(2u3+23)+u3u31+u33(2u3+23+1)+(3u3+33)(2u3+23+1))u3du3
Step 5.9
Apply the distributive property.
2(u3u3(2u3)+u3u3(23)+u3u31+u33(2u3+23+1)+(3u3+33)(2u3+23+1))u3du3
Step 5.10
Apply the distributive property.
2(u3u3(2u3)+u3u3(23)+u3u31+u33(2u3+23)+u331+(3u3+33)(2u3+23+1))u3du3
Step 5.11
Apply the distributive property.
2(u3u3(2u3)+u3u3(23)+u3u31+u33(2u3)+u33(23)+u331+(3u3+33)(2u3+23+1))u3du3
Step 5.12
Apply the distributive property.
2(u3u3(2u3)+u3u3(23)+u3u31+u33(2u3)+u33(23)+u331+3u3(2u3+23+1)+33(2u3+23+1))u3du3
Step 5.13
Apply the distributive property.
2(u3u3(2u3)+u3u3(23)+u3u31+u33(2u3)+u33(23)+u331+3u3(2u3+23)+3u31+33(2u3+23+1))u3du3
Step 5.14
Apply the distributive property.
2(u3u3(2u3)+u3u3(23)+u3u31+u33(2u3)+u33(23)+u331+3u3(2u3)+3u3(23)+3u31+33(2u3+23+1))u3du3
Step 5.15
Apply the distributive property.
2(u3u3(2u3)+u3u3(23)+u3u31+u33(2u3)+u33(23)+u331+3u3(2u3)+3u3(23)+3u31+33(2u3+23)+331)u3du3
Step 5.16
Apply the distributive property.
2(u3u3(2u3)+u3u3(23)+u3u31+u33(2u3)+u33(23)+u331+3u3(2u3)+3u3(23)+3u31+33(2u3)+33(23)+331)u3du3
Step 5.17
Apply the distributive property.
2(u3u3(2u3)+u3u3(23)+u3u31+u33(2u3)+u33(23)+u331)u3+(3u3(2u3)+3u3(23)+3u31+33(2u3)+33(23)+331)u3du3
Step 5.18
Apply the distributive property.
2(u3u3(2u3)+u3u3(23)+u3u31)u3+(u33(2u3)+u33(23)+u331)u3+(3u3(2u3)+3u3(23)+3u31+33(2u3)+33(23)+331)u3du3
Step 5.19
Apply the distributive property.
2(u3u3(2u3)+u3u3(23))u3+u3u31u3+(u33(2u3)+u33(23)+u331)u3+(3u3(2u3)+3u3(23)+3u31+33(2u3)+33(23)+331)u3du3
Step 5.20
Apply the distributive property.
2u3u3(2u3)u3+u3u3(23)u3+u3u31u3+(u33(2u3)+u33(23)+u331)u3+(3u3(2u3)+3u3(23)+3u31+33(2u3)+33(23)+331)u3du3
Step 5.21
Apply the distributive property.
2u3u3(2u3)u3+u3u3(23)u3+u3u31u3+(u33(2u3)+u33(23))u3+u331u3+(3u3(2u3)+3u3(23)+3u31+33(2u3)+33(23)+331)u3du3
Step 5.22
Apply the distributive property.
2u3u3(2u3)u3+u3u3(23)u3+u3u31u3+u33(2u3)u3+u33(23)u3+u331u3+(3u3(2u3)+3u3(23)+3u31+33(2u3)+33(23)+331)u3du3
Step 5.23
Apply the distributive property.
2u3u3(2u3)u3+u3u3(23)u3+u3u31u3+u33(2u3)u3+u33(23)u3+u331u3+(3u3(2u3)+3u3(23)+3u31)u3+(33(2u3)+33(23)+331)u3du3
Step 5.24
Apply the distributive property.
2u3u3(2u3)u3+u3u3(23)u3+u3u31u3+u33(2u3)u3+u33(23)u3+u331u3+(3u3(2u3)+3u3(23))u3+3u31u3+(33(2u3)+33(23)+331)u3du3
Step 5.25
Apply the distributive property.
2u3u3(2u3)u3+u3u3(23)u3+u3u31u3+u33(2u3)u3+u33(23)u3+u331u3+3u3(2u3)u3+3u3(23)u3+3u31u3+(33(2u3)+33(23)+331)u3du3
Step 5.26
Apply the distributive property.
2u3u3(2u3)u3+u3u3(23)u3+u3u31u3+u33(2u3)u3+u33(23)u3+u331u3+3u3(2u3)u3+3u3(23)u3+3u31u3+(33(2u3)+33(23))u3+331u3du3
Step 5.27
Apply the distributive property.
2u3u3(2u3)u3+u3u3(23)u3+u3u31u3+u33(2u3)u3+u33(23)u3+u331u3+3u3(2u3)u3+3u3(23)u3+3u31u3+33(2u3)u3+33(23)u3+331u3du3
Step 5.28
Move u3.
2u32u3u3u3+u3u3(23)u3+u3u31u3+u33(2u3)u3+u33(23)u3+u331u3+3u3(2u3)u3+3u3(23)u3+3u31u3+33(2u3)u3+33(23)u3+331u3du3
Step 5.29
Reorder u3 and 2.
22u3u3u3u3+u3u3(23)u3+u3u31u3+u33(2u3)u3+u33(23)u3+u331u3+3u3(2u3)u3+3u3(23)u3+3u31u3+33(2u3)u3+33(23)u3+331u3du3
Step 5.30
Move u3.
22u3u3u3u3+u323u3u3+u3u31u3+u33(2u3)u3+u33(23)u3+u331u3+3u3(2u3)u3+3u3(23)u3+3u31u3+33(2u3)u3+33(23)u3+331u3du3
Step 5.31
Move u3.
22u3u3u3u3+23u3u3u3+u3u31u3+u33(2u3)u3+u33(23)u3+u331u3+3u3(2u3)u3+3u3(23)u3+3u31u3+33(2u3)u3+33(23)u3+331u3du3
Step 5.32
Move u3.
22u3u3u3u3+23u3u3u3+u31u3u3+u33(2u3)u3+u33(23)u3+u331u3+3u3(2u3)u3+3u3(23)u3+3u31u3+33(2u3)u3+33(23)u3+331u3du3
Step 5.33
Reorder u3 and 1.
22u3u3u3u3+23u3u3u3+1u3u3u3+u33(2u3)u3+u33(23)u3+u331u3+3u3(2u3)u3+3u3(23)u3+3u31u3+33(2u3)u3+33(23)u3+331u3du3
Step 5.34
Reorder u3 and 3.
22u3u3u3u3+23u3u3u3+1u3u3u3+3u3(2u3)u3+u33(23)u3+u331u3+3u3(2u3)u3+3u3(23)u3+3u31u3+33(2u3)u3+33(23)u3+331u3du3
Step 5.35
Move u3.
22u3u3u3u3+23u3u3u3+1u3u3u3+32u3u3u3+u33(23)u3+u331u3+3u3(2u3)u3+3u3(23)u3+3u31u3+33(2u3)u3+33(23)u3+331u3du3
Step 5.36
Reorder u3 and 3.
22u3u3u3u3+23u3u3u3+1u3u3u3+32u3u3u3+3u3(23)u3+u331u3+3u3(2u3)u3+3u3(23)u3+3u31u3+33(2u3)u3+33(23)u3+331u3du3
Step 5.37
Move u3.
22u3u3u3u3+23u3u3u3+1u3u3u3+32u3u3u3+323u3u3+u331u3+3u3(2u3)u3+3u3(23)u3+3u31u3+33(2u3)u3+33(23)u3+331u3du3
Step 5.38
Reorder u3 and 3.
22u3u3u3u3+23u3u3u3+1u3u3u3+32u3u3u3+323u3u3+3u31u3+3u3(2u3)u3+3u3(23)u3+3u31u3+33(2u3)u3+33(23)u3+331u3du3
Step 5.39
Move u3.
22u3u3u3u3+23u3u3u3+1u3u3u3+32u3u3u3+323u3u3+31u3u3+3u3(2u3)u3+3u3(23)u3+3u31u3+33(2u3)u3+33(23)u3+331u3du3
Step 5.40
Move u3.
22u3u3u3u3+23u3u3u3+1u3u3u3+32u3u3u3+323u3u3+31u3u3+32u3u3u3+3u3(23)u3+3u31u3+33(2u3)u3+33(23)u3+331u3du3
Step 5.41
Move u3.
22u3u3u3u3+23u3u3u3+1u3u3u3+32u3u3u3+323u3u3+31u3u3+32u3u3u3+323u3u3+3u31u3+33(2u3)u3+33(23)u3+331u3du3
Step 5.42
Move u3.
22u3u3u3u3+23u3u3u3+1u3u3u3+32u3u3u3+323u3u3+31u3u3+32u3u3u3+323u3u3+31u3u3+33(2u3)u3+33(23)u3+331u3du3
Step 5.43
Raise u3 to the power of 1.
22(u31u3)u3u3+23u3u3u3+1u3u3u3+32u3u3u3+323u3u3+31u3u3+32u3u3u3+323u3u3+31u3u3+332u3u3+3323u3+331u3du3
Step 5.44
Raise u3 to the power of 1.
22(u31u31)u3u3+23u3u3u3+1u3u3u3+32u3u3u3+323u3u3+31u3u3+32u3u3u3+323u3u3+31u3u3+332u3u3+3323u3+331u3du3
Step 5.45
Use the power rule aman=am+n to combine exponents.
22u31+1u3u3+23u3u3u3+1u3u3u3+32u3u3u3+323u3u3+31u3u3+32u3u3u3+323u3u3+31u3u3+332u3u3+3323u3+331u3du3
Step 5.46
Add 1 and 1.
22u32u3u3+23u3u3u3+1u3u3u3+32u3u3u3+323u3u3+31u3u3+32u3u3u3+323u3u3+31u3u3+332u3u3+3323u3+331u3du3
Step 5.47
Raise u3 to the power of 1.
22(u32u31)u3+23u3u3u3+1u3u3u3+32u3u3u3+323u3u3+31u3u3+32u3u3u3+323u3u3+31u3u3+332u3u3+3323u3+331u3du3
Step 5.48
Use the power rule aman=am+n to combine exponents.
22u32+1u3+23u3u3u3+1u3u3u3+32u3u3u3+323u3u3+31u3u3+32u3u3u3+323u3u3+31u3u3+332u3u3+3323u3+331u3du3
Step 5.49
Add 2 and 1.
22u33u3+23u3u3u3+1u3u3u3+32u3u3u3+323u3u3+31u3u3+32u3u3u3+323u3u3+31u3u3+332u3u3+3323u3+331u3du3
Step 5.50
Raise u3 to the power of 1.
22(u33u31)+23u3u3u3+1u3u3u3+32u3u3u3+323u3u3+31u3u3+32u3u3u3+323u3u3+31u3u3+332u3u3+3323u3+331u3du3
Step 5.51
Use the power rule aman=am+n to combine exponents.
22u33+1+23u3u3u3+1u3u3u3+32u3u3u3+323u3u3+31u3u3+32u3u3u3+323u3u3+31u3u3+332u3u3+3323u3+331u3du3
Step 5.52
Add 3 and 1.
22u34+23u3u3u3+1u3u3u3+32u3u3u3+323u3u3+31u3u3+32u3u3u3+323u3u3+31u3u3+332u3u3+3323u3+331u3du3
Step 5.53
Multiply 2 by 3.
22u34+6u3u3u3+1u3u3u3+32u3u3u3+323u3u3+31u3u3+32u3u3u3+323u3u3+31u3u3+332u3u3+3323u3+331u3du3
Step 5.54
Raise u3 to the power of 1.
22u34+6(u31u3)u3+1u3u3u3+32u3u3u3+323u3u3+31u3u3+32u3u3u3+323u3u3+31u3u3+332u3u3+3323u3+331u3du3
Step 5.55
Raise u3 to the power of 1.
22u34+6(u31u31)u3+1u3u3u3+32u3u3u3+323u3u3+31u3u3+32u3u3u3+323u3u3+31u3u3+332u3u3+3323u3+331u3du3
Step 5.56
Use the power rule aman=am+n to combine exponents.
22u34+6u31+1u3+1u3u3u3+32u3u3u3+323u3u3+31u3u3+32u3u3u3+323u3u3+31u3u3+332u3u3+3323u3+331u3du3
Step 5.57
Add 1 and 1.
22u34+6u32u3+1u3u3u3+32u3u3u3+323u3u3+31u3u3+32u3u3u3+323u3u3+31u3u3+332u3u3+3323u3+331u3du3
Step 5.58
Raise u3 to the power of 1.
22u34+6(u32u31)+1u3u3u3+32u3u3u3+323u3u3+31u3u3+32u3u3u3+323u3u3+31u3u3+332u3u3+3323u3+331u3du3
Step 5.59
Use the power rule aman=am+n to combine exponents.
22u34+6u32+1+1u3u3u3+32u3u3u3+323u3u3+31u3u3+32u3u3u3+323u3u3+31u3u3+332u3u3+3323u3+331u3du3
Step 5.60
Add and .
Step 5.61
Multiply by .
Step 5.62
Raise to the power of .
Step 5.63
Raise to the power of .
Step 5.64
Use the power rule to combine exponents.
Step 5.65
Add and .
Step 5.66
Raise to the power of .
Step 5.67
Use the power rule to combine exponents.
Step 5.68
Add and .
Step 5.69
Add and .
Step 5.70
Multiply by .
Step 5.71
Raise to the power of .
Step 5.72
Raise to the power of .
Step 5.73
Use the power rule to combine exponents.
Step 5.74
Add and .
Step 5.75
Raise to the power of .
Step 5.76
Use the power rule to combine exponents.
Step 5.77
Add and .
Step 5.78
Multiply by .
Step 5.79
Multiply by .
Step 5.80
Raise to the power of .
Step 5.81
Raise to the power of .
Step 5.82
Use the power rule to combine exponents.
Step 5.83
Add and .
Step 5.84
Multiply by .
Step 5.85
Raise to the power of .
Step 5.86
Raise to the power of .
Step 5.87
Use the power rule to combine exponents.
Step 5.88
Add and .
Step 5.89
Add and .
Step 5.90
Add and .
Step 5.91
Multiply by .
Step 5.92
Raise to the power of .
Step 5.93
Raise to the power of .
Step 5.94
Use the power rule to combine exponents.
Step 5.95
Add and .
Step 5.96
Raise to the power of .
Step 5.97
Use the power rule to combine exponents.
Step 5.98
Add and .
Step 5.99
Multiply by .
Step 5.100
Multiply by .
Step 5.101
Raise to the power of .
Step 5.102
Raise to the power of .
Step 5.103
Use the power rule to combine exponents.
Step 5.104
Add and .
Step 5.105
Multiply by .
Step 5.106
Raise to the power of .
Step 5.107
Raise to the power of .
Step 5.108
Use the power rule to combine exponents.
Step 5.109
Add and .
Step 5.110
Add and .
Step 5.111
Multiply by .
Step 5.112
Multiply by .
Step 5.113
Raise to the power of .
Step 5.114
Raise to the power of .
Step 5.115
Use the power rule to combine exponents.
Step 5.116
Add and .
Step 5.117
Multiply by .
Step 5.118
Multiply by .
Step 5.119
Multiply by .
Step 5.120
Multiply by .
Step 5.121
Multiply by .
Step 5.122
Add and .
Step 5.123
Add and .
Step 5.124
Move .
Step 5.125
Add and .
Step 5.126
Add and .
Step 6
Split the single integral into multiple integrals.
Step 7
Since is constant with respect to , move out of the integral.
Step 8
By the Power Rule, the integral of with respect to is .
Step 9
Since is constant with respect to , move out of the integral.
Step 10
By the Power Rule, the integral of with respect to is .
Step 11
Since is constant with respect to , move out of the integral.
Step 12
By the Power Rule, the integral of with respect to is .
Step 13
Since is constant with respect to , move out of the integral.
Step 14
By the Power Rule, the integral of with respect to is .
Step 15
Simplify.
Step 16
Substitute back in for each integration substitution variable.
Tap for more steps...
Step 16.1
Replace all occurrences of with .
Step 16.2
Replace all occurrences of with .
Step 16.3
Replace all occurrences of with .
Step 17
Reorder terms.