Enter a problem...
Calculus Examples
∫(-x2+xx4)dx∫(−x2+xx4)dx
Step 1
Remove parentheses.
∫-x2+xx4dx∫−x2+xx4dx
Step 2
Step 2.1
Simplify.
Step 2.1.1
Factor xx out of -x2+x−x2+x.
Step 2.1.1.1
Factor xx out of -x2−x2.
∫x(-x)+xx4dx∫x(−x)+xx4dx
Step 2.1.1.2
Raise xx to the power of 11.
∫x(-x)+x1x4dx∫x(−x)+x1x4dx
Step 2.1.1.3
Factor xx out of x1x1.
∫x(-x)+x⋅1x4dx∫x(−x)+x⋅1x4dx
Step 2.1.1.4
Factor xx out of x(-x)+x⋅1x(−x)+x⋅1.
∫x(-x+1)x4dx∫x(−x+1)x4dx
∫x(-x+1)x4dx∫x(−x+1)x4dx
Step 2.1.2
Cancel the common factors.
Step 2.1.2.1
Factor xx out of x4x4.
∫x(-x+1)x⋅x3dx∫x(−x+1)x⋅x3dx
Step 2.1.2.2
Cancel the common factor.
∫x(-x+1)x⋅x3dx
Step 2.1.2.3
Rewrite the expression.
∫-x+1x3dx
∫-x+1x3dx
∫-x+1x3dx
Step 2.2
Apply basic rules of exponents.
Step 2.2.1
Move x3 out of the denominator by raising it to the -1 power.
∫(-x+1)(x3)-1dx
Step 2.2.2
Multiply the exponents in (x3)-1.
Step 2.2.2.1
Apply the power rule and multiply exponents, (am)n=amn.
∫(-x+1)x3⋅-1dx
Step 2.2.2.2
Multiply 3 by -1.
∫(-x+1)x-3dx
∫(-x+1)x-3dx
∫(-x+1)x-3dx
∫(-x+1)x-3dx
Step 3
Multiply (-x+1)x-3.
∫-x⋅x-3+1x-3dx
Step 4
Step 4.1
Multiply x by x-3 by adding the exponents.
Step 4.1.1
Move x-3.
∫-(x-3x)+1x-3dx
Step 4.1.2
Multiply x-3 by x.
Step 4.1.2.1
Raise x to the power of 1.
∫-(x-3x1)+1x-3dx
Step 4.1.2.2
Use the power rule aman=am+n to combine exponents.
∫-x-3+1+1x-3dx
∫-x-3+1+1x-3dx
Step 4.1.3
Add -3 and 1.
∫-x-2+1x-3dx
∫-x-2+1x-3dx
Step 4.2
Multiply x-3 by 1.
∫-x-2+x-3dx
∫-x-2+x-3dx
Step 5
Split the single integral into multiple integrals.
∫-x-2dx+∫x-3dx
Step 6
Since -1 is constant with respect to x, move -1 out of the integral.
-∫x-2dx+∫x-3dx
Step 7
By the Power Rule, the integral of x-2 with respect to x is -x-1.
-(-x-1+C)+∫x-3dx
Step 8
By the Power Rule, the integral of x-3 with respect to x is -12x-2.
-(-x-1+C)-12x-2+C
Step 9
Step 9.1
Simplify.
--1x-12x-2+C
Step 9.2
Simplify.
Step 9.2.1
Multiply -1 by -1.
11x-12x-2+C
Step 9.2.2
Multiply 1x by 1.
1x-12x-2+C
1x-12x-2+C
1x-12x-2+C