Enter a problem...
Calculus Examples
Step 1
Write as a function.
Step 2
The function can be found by finding the indefinite integral of the derivative .
Step 3
Set up the integral to solve.
Step 4
Split the single integral into multiple integrals.
Step 5
By the Power Rule, the integral of with respect to is .
Step 6
Since is constant with respect to , move out of the integral.
Step 7
Step 7.1
Let . Find .
Step 7.1.1
Differentiate .
Step 7.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 7.1.3
Differentiate using the Power Rule which states that is where .
Step 7.1.4
Multiply by .
Step 7.2
Rewrite the problem using and .
Step 8
Combine and .
Step 9
Since is constant with respect to , move out of the integral.
Step 10
The integral of with respect to is .
Step 11
Step 11.1
Simplify.
Step 11.2
Simplify.
Step 11.2.1
Multiply by .
Step 11.2.2
Multiply by .
Step 11.2.3
Combine and .
Step 12
Replace all occurrences of with .
Step 13
Reorder terms.
Step 14
The answer is the antiderivative of the function .