Enter a problem...
Calculus Examples
Step 1
By the Sum Rule, the derivative of with respect to is .
Step 2
The derivative of with respect to is .
Step 3
Step 3.1
Use to rewrite as .
Step 3.2
Since is constant with respect to , the derivative of with respect to is .
Step 3.3
Differentiate using the Power Rule which states that is where .
Step 3.4
To write as a fraction with a common denominator, multiply by .
Step 3.5
Combine and .
Step 3.6
Combine the numerators over the common denominator.
Step 3.7
Simplify the numerator.
Step 3.7.1
Multiply by .
Step 3.7.2
Subtract from .
Step 3.8
Move the negative in front of the fraction.
Step 3.9
Combine and .
Step 3.10
Combine and .
Step 3.11
Move to the denominator using the negative exponent rule .
Step 3.12
Cancel the common factor.
Step 3.13
Rewrite the expression.
Step 4
Step 4.1
Combine terms.
Step 4.1.1
To write as a fraction with a common denominator, multiply by .
Step 4.1.2
To write as a fraction with a common denominator, multiply by .
Step 4.1.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 4.1.3.1
Multiply by .
Step 4.1.3.2
Multiply by .
Step 4.1.3.3
Reorder the factors of .
Step 4.1.4
Combine the numerators over the common denominator.
Step 4.2
Reorder terms.