Calculus Examples

Evaluate the Integral integral of sin(3x)+e^(2x+1) with respect to x
Step 1
Split the single integral into multiple integrals.
Step 2
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 2.1
Let . Find .
Tap for more steps...
Step 2.1.1
Differentiate .
Step 2.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.3
Differentiate using the Power Rule which states that is where .
Step 2.1.4
Multiply by .
Step 2.2
Rewrite the problem using and .
Step 3
Combine and .
Step 4
Since is constant with respect to , move out of the integral.
Step 5
The integral of with respect to is .
Step 6
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 6.1
Let . Find .
Tap for more steps...
Step 6.1.1
Differentiate .
Step 6.1.2
By the Sum Rule, the derivative of with respect to is .
Step 6.1.3
Evaluate .
Tap for more steps...
Step 6.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 6.1.3.2
Differentiate using the Power Rule which states that is where .
Step 6.1.3.3
Multiply by .
Step 6.1.4
Differentiate using the Constant Rule.
Tap for more steps...
Step 6.1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 6.1.4.2
Add and .
Step 6.2
Rewrite the problem using and .
Step 7
Combine and .
Step 8
Since is constant with respect to , move out of the integral.
Step 9
The integral of with respect to is .
Step 10
Simplify.
Step 11
Substitute back in for each integration substitution variable.
Tap for more steps...
Step 11.1
Replace all occurrences of with .
Step 11.2
Replace all occurrences of with .
Step 12
Reorder terms.