Enter a problem...
Calculus Examples
f(x)=-4x-2f(x)=−4x−2 , [0,1][0,1]
Step 1
Step 1.1
Set the denominator in 4x-24x−2 equal to 00 to find where the expression is undefined.
x-2=0x−2=0
Step 1.2
Add 22 to both sides of the equation.
x=2x=2
Step 1.3
The domain is all values of xx that make the expression defined.
Interval Notation:
(-∞,2)∪(2,∞)(−∞,2)∪(2,∞)
Set-Builder Notation:
{x|x≠2}{x|x≠2}
Interval Notation:
(-∞,2)∪(2,∞)(−∞,2)∪(2,∞)
Set-Builder Notation:
{x|x≠2}{x|x≠2}
Step 2
f(x)f(x) is continuous on [0,1][0,1].
f(x)f(x) is continuous
Step 3
The average value of function ff over the interval [a,b][a,b] is defined as A(x)=1b-a∫baf(x)dxA(x)=1b−a∫baf(x)dx.
A(x)=1b-a∫baf(x)dxA(x)=1b−a∫baf(x)dx
Step 4
Substitute the actual values into the formula for the average value of a function.
A(x)=11-0(∫10-4x-2dx)A(x)=11−0(∫10−4x−2dx)
Step 5
Since -1−1 is constant with respect to xx, move -1−1 out of the integral.
A(x)=11-0(-∫104x-2dx)A(x)=11−0(−∫104x−2dx)
Step 6
Since 44 is constant with respect to xx, move 44 out of the integral.
A(x)=11-0(-(4∫101x-2dx))A(x)=11−0(−(4∫101x−2dx))
Step 7
Multiply 44 by -1−1.
A(x)=11-0(-4∫101x-2dx)A(x)=11−0(−4∫101x−2dx)
Step 8
Step 8.1
Let u=x-2u=x−2. Find dudxdudx.
Step 8.1.1
Differentiate x-2x−2.
ddx[x-2]ddx[x−2]
Step 8.1.2
By the Sum Rule, the derivative of x-2x−2 with respect to xx is ddx[x]+ddx[-2]ddx[x]+ddx[−2].
ddx[x]+ddx[-2]ddx[x]+ddx[−2]
Step 8.1.3
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=1n=1.
1+ddx[-2]1+ddx[−2]
Step 8.1.4
Since -2−2 is constant with respect to xx, the derivative of -2−2 with respect to xx is 00.
1+01+0
Step 8.1.5
Add 11 and 00.
11
11
Step 8.2
Substitute the lower limit in for xx in u=x-2u=x−2.
ulower=0-2ulower=0−2
Step 8.3
Subtract 22 from 00.
ulower=-2ulower=−2
Step 8.4
Substitute the upper limit in for xx in u=x-2u=x−2.
uupper=1-2uupper=1−2
Step 8.5
Subtract 22 from 11.
uupper=-1uupper=−1
Step 8.6
The values found for ulowerulower and uupperuupper will be used to evaluate the definite integral.
ulower=-2ulower=−2
uupper=-1uupper=−1
Step 8.7
Rewrite the problem using uu, dudu, and the new limits of integration.
A(x)=11-0(-4∫-1-21udu)A(x)=11−0(−4∫−1−21udu)
A(x)=11-0(-4∫-1-21udu)
Step 9
The integral of 1u with respect to u is ln(|u|).
A(x)=11-0(-4(ln(|u|)]-1-2))
Step 10
Evaluate ln(|u|) at -1 and at -2.
A(x)=11-0(-4(ln(|-1|)-ln(|-2|)))
Step 11
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).
A(x)=11-0(-4ln(|-1||-2|))
Step 12
Step 12.1
The absolute value is the distance between a number and zero. The distance between -1 and 0 is 1.
A(x)=11-0(-4ln(1|-2|))
Step 12.2
The absolute value is the distance between a number and zero. The distance between -2 and 0 is 2.
A(x)=11-0(-4ln(12))
A(x)=11-0(-4ln(12))
Step 13
Step 13.1
Multiply -1 by 0.
A(x)=11+0⋅(-4ln(12))
Step 13.2
Add 1 and 0.
A(x)=11⋅(-4ln(12))
A(x)=11⋅(-4ln(12))
Step 14
Step 14.1
Cancel the common factor of 1.
Step 14.1.1
Cancel the common factor.
A(x)=11⋅(-4ln(12))
Step 14.1.2
Rewrite the expression.
A(x)=1⋅(-4ln(12))
A(x)=1⋅(-4ln(12))
Step 14.2
Multiply -4ln(12) by 1.
A(x)=-4ln(12)
A(x)=-4ln(12)
Step 15
Simplify -4ln(12) by moving 4 inside the logarithm.
A(x)=-ln((12)4)
Step 16
Apply the product rule to 12.
A(x)=-ln(1424)
Step 17
One to any power is one.
A(x)=-ln(124)
Step 18
Raise 2 to the power of 4.
A(x)=-ln(116)
Step 19