Calculus Examples

Find the Maximum/Minimum Value y=-3 square root of x+1+4
Step 1
Find the first derivative of the function.
Tap for more steps...
Step 1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2
Evaluate .
Tap for more steps...
Step 1.2.1
Use to rewrite as .
Step 1.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.2.3.1
To apply the Chain Rule, set as .
Step 1.2.3.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3.3
Replace all occurrences of with .
Step 1.2.4
By the Sum Rule, the derivative of with respect to is .
Step 1.2.5
Differentiate using the Power Rule which states that is where .
Step 1.2.6
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.7
To write as a fraction with a common denominator, multiply by .
Step 1.2.8
Combine and .
Step 1.2.9
Combine the numerators over the common denominator.
Step 1.2.10
Simplify the numerator.
Tap for more steps...
Step 1.2.10.1
Multiply by .
Step 1.2.10.2
Subtract from .
Step 1.2.11
Move the negative in front of the fraction.
Step 1.2.12
Add and .
Step 1.2.13
Combine and .
Step 1.2.14
Multiply by .
Step 1.2.15
Move to the denominator using the negative exponent rule .
Step 1.2.16
Combine and .
Step 1.2.17
Move the negative in front of the fraction.
Step 1.3
Differentiate using the Constant Rule.
Tap for more steps...
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Add and .
Step 2
Find the second derivative of the function.
Tap for more steps...
Step 2.1
Differentiate using the Constant Multiple Rule.
Tap for more steps...
Step 2.1.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.2
Apply basic rules of exponents.
Tap for more steps...
Step 2.1.2.1
Rewrite as .
Step 2.1.2.2
Multiply the exponents in .
Tap for more steps...
Step 2.1.2.2.1
Apply the power rule and multiply exponents, .
Step 2.1.2.2.2
Combine and .
Step 2.1.2.2.3
Move the negative in front of the fraction.
Step 2.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.2.1
To apply the Chain Rule, set as .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3
Replace all occurrences of with .
Step 2.3
To write as a fraction with a common denominator, multiply by .
Step 2.4
Combine and .
Step 2.5
Combine the numerators over the common denominator.
Step 2.6
Simplify the numerator.
Tap for more steps...
Step 2.6.1
Multiply by .
Step 2.6.2
Subtract from .
Step 2.7
Combine fractions.
Tap for more steps...
Step 2.7.1
Move the negative in front of the fraction.
Step 2.7.2
Combine and .
Step 2.7.3
Simplify the expression.
Tap for more steps...
Step 2.7.3.1
Move to the denominator using the negative exponent rule .
Step 2.7.3.2
Multiply by .
Step 2.7.3.3
Multiply by .
Step 2.7.4
Multiply by .
Step 2.7.5
Multiply by .
Step 2.8
By the Sum Rule, the derivative of with respect to is .
Step 2.9
Differentiate using the Power Rule which states that is where .
Step 2.10
Since is constant with respect to , the derivative of with respect to is .
Step 2.11
Simplify the expression.
Tap for more steps...
Step 2.11.1
Add and .
Step 2.11.2
Multiply by .
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Find the first derivative.
Tap for more steps...
Step 4.1
Find the first derivative.
Tap for more steps...
Step 4.1.1
By the Sum Rule, the derivative of with respect to is .
Step 4.1.2
Evaluate .
Tap for more steps...
Step 4.1.2.1
Use to rewrite as .
Step 4.1.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.2.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 4.1.2.3.1
To apply the Chain Rule, set as .
Step 4.1.2.3.2
Differentiate using the Power Rule which states that is where .
Step 4.1.2.3.3
Replace all occurrences of with .
Step 4.1.2.4
By the Sum Rule, the derivative of with respect to is .
Step 4.1.2.5
Differentiate using the Power Rule which states that is where .
Step 4.1.2.6
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.2.7
To write as a fraction with a common denominator, multiply by .
Step 4.1.2.8
Combine and .
Step 4.1.2.9
Combine the numerators over the common denominator.
Step 4.1.2.10
Simplify the numerator.
Tap for more steps...
Step 4.1.2.10.1
Multiply by .
Step 4.1.2.10.2
Subtract from .
Step 4.1.2.11
Move the negative in front of the fraction.
Step 4.1.2.12
Add and .
Step 4.1.2.13
Combine and .
Step 4.1.2.14
Multiply by .
Step 4.1.2.15
Move to the denominator using the negative exponent rule .
Step 4.1.2.16
Combine and .
Step 4.1.2.17
Move the negative in front of the fraction.
Step 4.1.3
Differentiate using the Constant Rule.
Tap for more steps...
Step 4.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.3.2
Add and .
Step 4.2
The first derivative of with respect to is .
Step 5
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 5.1
Set the first derivative equal to .
Step 5.2
Set the numerator equal to zero.
Step 5.3
Since , there are no solutions.
No solution
No solution
Step 6
Find the values where the derivative is undefined.
Tap for more steps...
Step 6.1
Convert expressions with fractional exponents to radicals.
Tap for more steps...
Step 6.1.1
Apply the rule to rewrite the exponentiation as a radical.
Step 6.1.2
Anything raised to is the base itself.
Step 6.2
Set the denominator in equal to to find where the expression is undefined.
Step 6.3
Solve for .
Tap for more steps...
Step 6.3.1
To remove the radical on the left side of the equation, square both sides of the equation.
Step 6.3.2
Simplify each side of the equation.
Tap for more steps...
Step 6.3.2.1
Use to rewrite as .
Step 6.3.2.2
Simplify the left side.
Tap for more steps...
Step 6.3.2.2.1
Simplify .
Tap for more steps...
Step 6.3.2.2.1.1
Apply the product rule to .
Step 6.3.2.2.1.2
Raise to the power of .
Step 6.3.2.2.1.3
Multiply the exponents in .
Tap for more steps...
Step 6.3.2.2.1.3.1
Apply the power rule and multiply exponents, .
Step 6.3.2.2.1.3.2
Cancel the common factor of .
Tap for more steps...
Step 6.3.2.2.1.3.2.1
Cancel the common factor.
Step 6.3.2.2.1.3.2.2
Rewrite the expression.
Step 6.3.2.2.1.4
Simplify.
Step 6.3.2.2.1.5
Apply the distributive property.
Step 6.3.2.2.1.6
Multiply by .
Step 6.3.2.3
Simplify the right side.
Tap for more steps...
Step 6.3.2.3.1
Raising to any positive power yields .
Step 6.3.3
Solve for .
Tap for more steps...
Step 6.3.3.1
Subtract from both sides of the equation.
Step 6.3.3.2
Divide each term in by and simplify.
Tap for more steps...
Step 6.3.3.2.1
Divide each term in by .
Step 6.3.3.2.2
Simplify the left side.
Tap for more steps...
Step 6.3.3.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 6.3.3.2.2.1.1
Cancel the common factor.
Step 6.3.3.2.2.1.2
Divide by .
Step 6.3.3.2.3
Simplify the right side.
Tap for more steps...
Step 6.3.3.2.3.1
Divide by .
Step 6.4
Set the radicand in less than to find where the expression is undefined.
Step 6.5
Subtract from both sides of the inequality.
Step 6.6
The equation is undefined where the denominator equals , the argument of a square root is less than , or the argument of a logarithm is less than or equal to .
Step 7
Critical points to evaluate.
Step 8
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 9
Evaluate the second derivative.
Tap for more steps...
Step 9.1
Simplify the expression.
Tap for more steps...
Step 9.1.1
Add and .
Step 9.1.2
Rewrite as .
Step 9.1.3
Apply the power rule and multiply exponents, .
Step 9.2
Cancel the common factor of .
Tap for more steps...
Step 9.2.1
Cancel the common factor.
Step 9.2.2
Rewrite the expression.
Step 9.3
Simplify the expression.
Tap for more steps...
Step 9.3.1
Raising to any positive power yields .
Step 9.3.2
Multiply by .
Step 9.3.3
The expression contains a division by . The expression is undefined.
Undefined
Step 9.4
The expression contains a division by . The expression is undefined.
Undefined
Undefined
Step 10
Since the first derivative test failed, there are no local extrema.
No Local Extrema
Step 11