Calculus Examples

Evaluate the Integral integral of 8/( square root of 12-x^2-4x) with respect to x
812-x2-4xdx812x24xdx
Step 1
Factor by grouping.
Tap for more steps...
Step 1.1
Reorder terms.
8-x2-4x+12dx8x24x+12dx
Step 1.2
For a polynomial of the form ax2+bx+cax2+bx+c, rewrite the middle term as a sum of two terms whose product is ac=-112=-12ac=112=12 and whose sum is b=-4b=4.
Tap for more steps...
Step 1.2.1
Factor -44 out of -4x4x.
8-x2-4(x)+12dx8x24(x)+12dx
Step 1.2.2
Rewrite -44 as 22 plus -66
8-x2+(2-6)x+12dx8x2+(26)x+12dx
Step 1.2.3
Apply the distributive property.
8-x2+2x-6x+12dx8x2+2x6x+12dx
8-x2+2x-6x+12dx8x2+2x6x+12dx
Step 1.3
Factor out the greatest common factor from each group.
Tap for more steps...
Step 1.3.1
Group the first two terms and the last two terms.
8(-x2+2x)-6x+12dx8(x2+2x)6x+12dx
Step 1.3.2
Factor out the greatest common factor (GCF) from each group.
8x(-x+2)+6(-x+2)dx8x(x+2)+6(x+2)dx
8x(-x+2)+6(-x+2)dx8x(x+2)+6(x+2)dx
Step 1.4
Factor the polynomial by factoring out the greatest common factor, -x+2x+2.
8(-x+2)(x+6)dx8(x+2)(x+6)dx
8(-x+2)(x+6)dx8(x+2)(x+6)dx
Step 2
Since 88 is constant with respect to xx, move 88 out of the integral.
81(-x+2)(x+6)dx81(x+2)(x+6)dx
Step 3
Complete the square.
Tap for more steps...
Step 3.1
Simplify the expression.
Tap for more steps...
Step 3.1.1
Expand (-x+2)(x+6)(x+2)(x+6) using the FOIL Method.
Tap for more steps...
Step 3.1.1.1
Apply the distributive property.
-x(x+6)+2(x+6)
Step 3.1.1.2
Apply the distributive property.
-xx-x6+2(x+6)
Step 3.1.1.3
Apply the distributive property.
-xx-x6+2x+26
-xx-x6+2x+26
Step 3.1.2
Simplify and combine like terms.
Tap for more steps...
Step 3.1.2.1
Simplify each term.
Tap for more steps...
Step 3.1.2.1.1
Multiply x by x by adding the exponents.
Tap for more steps...
Step 3.1.2.1.1.1
Move x.
-(xx)-x6+2x+26
Step 3.1.2.1.1.2
Multiply x by x.
-x2-x6+2x+26
-x2-x6+2x+26
Step 3.1.2.1.2
Multiply 6 by -1.
-x2-6x+2x+26
Step 3.1.2.1.3
Multiply 2 by 6.
-x2-6x+2x+12
-x2-6x+2x+12
Step 3.1.2.2
Add -6x and 2x.
-x2-4x+12
-x2-4x+12
-x2-4x+12
Step 3.2
Use the form ax2+bx+c, to find the values of a, b, and c.
a=-1
b=-4
c=12
Step 3.3
Consider the vertex form of a parabola.
a(x+d)2+e
Step 3.4
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 3.4.1
Substitute the values of a and b into the formula d=b2a.
d=-42-1
Step 3.4.2
Simplify the right side.
Tap for more steps...
Step 3.4.2.1
Cancel the common factor of -4 and 2.
Tap for more steps...
Step 3.4.2.1.1
Factor 2 out of -4.
d=2-22-1
Step 3.4.2.1.2
Move the negative one from the denominator of -2-1.
d=-1-2
d=-1-2
Step 3.4.2.2
Rewrite -1-2 as --2.
d=--2
Step 3.4.2.3
Multiply -1 by -2.
d=2
d=2
d=2
Step 3.5
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 3.5.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=12-(-4)24-1
Step 3.5.2
Simplify the right side.
Tap for more steps...
Step 3.5.2.1
Simplify each term.
Tap for more steps...
Step 3.5.2.1.1
Cancel the common factor of (-4)2 and 4.
Tap for more steps...
Step 3.5.2.1.1.1
Rewrite -4 as -1(4).
e=12-(-1(4))24-1
Step 3.5.2.1.1.2
Apply the product rule to -1(4).
e=12-(-1)2424-1
Step 3.5.2.1.1.3
Raise -1 to the power of 2.
e=12-1424-1
Step 3.5.2.1.1.4
Multiply 42 by 1.
e=12-424-1
Step 3.5.2.1.1.5
Factor 4 out of 42.
e=12-444-1
Step 3.5.2.1.1.6
Move the negative one from the denominator of 4-1.
e=12-(-14)
e=12-(-14)
Step 3.5.2.1.2
Multiply -(-14).
Tap for more steps...
Step 3.5.2.1.2.1
Multiply -1 by 4.
e=12--4
Step 3.5.2.1.2.2
Multiply -1 by -4.
e=12+4
e=12+4
e=12+4
Step 3.5.2.2
Add 12 and 4.
e=16
e=16
e=16
Step 3.6
Substitute the values of a, d, and e into the vertex form -(x+2)2+16.
81-(x+2)2+16dx
81-(x+2)2+16dx
Step 4
Let u=x+2. Then du=dx. Rewrite using u and du.
Tap for more steps...
Step 4.1
Let u=x+2. Find dudx.
Tap for more steps...
Step 4.1.1
Differentiate x+2.
ddx[x+2]
Step 4.1.2
By the Sum Rule, the derivative of x+2 with respect to x is ddx[x]+ddx[2].
ddx[x]+ddx[2]
Step 4.1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
1+ddx[2]
Step 4.1.4
Since 2 is constant with respect to x, the derivative of 2 with respect to x is 0.
1+0
Step 4.1.5
Add 1 and 0.
1
1
Step 4.2
Rewrite the problem using u and du.
81-u2+16du
81-u2+16du
Step 5
Simplify the expression.
Tap for more steps...
Step 5.1
Rewrite 16 as 42.
81-u2+42du
Step 5.2
Reorder -u2 and 42.
8142-u2du
8142-u2du
Step 6
The integral of 142-u2 with respect to u is arcsin(u4)
8(arcsin(u4)+C)
Step 7
Rewrite 8(arcsin(u4)+C) as 8arcsin(14u)+C.
8arcsin(14u)+C
Step 8
Replace all occurrences of u with x+2.
8arcsin(14(x+2))+C
Step 9
Simplify.
Tap for more steps...
Step 9.1
Apply the distributive property.
8arcsin(14x+142)+C
Step 9.2
Combine 14 and x.
8arcsin(x4+142)+C
Step 9.3
Cancel the common factor of 2.
Tap for more steps...
Step 9.3.1
Factor 2 out of 4.
8arcsin(x4+12(2)2)+C
Step 9.3.2
Cancel the common factor.
8arcsin(x4+1222)+C
Step 9.3.3
Rewrite the expression.
8arcsin(x4+12)+C
8arcsin(x4+12)+C
8arcsin(x4+12)+C
Step 10
Reorder terms.
8arcsin(14x+12)+C
 [x2  12  π  xdx ]