Calculus Examples

Evaluate the Limit limit as n approaches infinity of (6n^3+2n^2+10)/(n^3+1)
Step 1
Divide the numerator and denominator by the highest power of in the denominator, which is .
Step 2
Evaluate the limit.
Tap for more steps...
Step 2.1
Simplify each term.
Tap for more steps...
Step 2.1.1
Cancel the common factor of .
Tap for more steps...
Step 2.1.1.1
Cancel the common factor.
Step 2.1.1.2
Divide by .
Step 2.1.2
Cancel the common factor of and .
Tap for more steps...
Step 2.1.2.1
Factor out of .
Step 2.1.2.2
Cancel the common factors.
Tap for more steps...
Step 2.1.2.2.1
Factor out of .
Step 2.1.2.2.2
Cancel the common factor.
Step 2.1.2.2.3
Rewrite the expression.
Step 2.2
Cancel the common factor of .
Tap for more steps...
Step 2.2.1
Cancel the common factor.
Step 2.2.2
Rewrite the expression.
Step 2.3
Split the limit using the Limits Quotient Rule on the limit as approaches .
Step 2.4
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 2.5
Evaluate the limit of which is constant as approaches .
Step 2.6
Move the term outside of the limit because it is constant with respect to .
Step 3
Since its numerator approaches a real number while its denominator is unbounded, the fraction approaches .
Step 4
Move the term outside of the limit because it is constant with respect to .
Step 5
Since its numerator approaches a real number while its denominator is unbounded, the fraction approaches .
Step 6
Evaluate the limit.
Tap for more steps...
Step 6.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 6.2
Evaluate the limit of which is constant as approaches .
Step 7
Since its numerator approaches a real number while its denominator is unbounded, the fraction approaches .
Step 8
Simplify the answer.
Tap for more steps...
Step 8.1
Simplify the numerator.
Tap for more steps...
Step 8.1.1
Multiply by .
Step 8.1.2
Multiply by .
Step 8.1.3
Add and .
Step 8.1.4
Add and .
Step 8.2
Add and .
Step 8.3
Divide by .