Enter a problem...
Calculus Examples
Step 1
Move the term outside of the limit because it is constant with respect to .
Step 2
Step 2.1
Evaluate the limit of the numerator and the limit of the denominator.
Step 2.1.1
Take the limit of the numerator and the limit of the denominator.
Step 2.1.2
Evaluate the limit of the numerator.
Step 2.1.2.1
Evaluate the limit.
Step 2.1.2.1.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 2.1.2.1.2
Move the exponent from outside the limit using the Limits Power Rule.
Step 2.1.2.1.3
Evaluate the limit of which is constant as approaches .
Step 2.1.2.2
Evaluate the limit of by plugging in for .
Step 2.1.2.3
Simplify the answer.
Step 2.1.2.3.1
Simplify each term.
Step 2.1.2.3.1.1
Apply the product rule to .
Step 2.1.2.3.1.2
Raise to the power of .
Step 2.1.2.3.1.3
Multiply by .
Step 2.1.2.3.1.4
Rewrite as .
Step 2.1.2.3.1.4.1
Use to rewrite as .
Step 2.1.2.3.1.4.2
Apply the power rule and multiply exponents, .
Step 2.1.2.3.1.4.3
Combine and .
Step 2.1.2.3.1.4.4
Cancel the common factor of and .
Step 2.1.2.3.1.4.4.1
Factor out of .
Step 2.1.2.3.1.4.4.2
Cancel the common factors.
Step 2.1.2.3.1.4.4.2.1
Factor out of .
Step 2.1.2.3.1.4.4.2.2
Cancel the common factor.
Step 2.1.2.3.1.4.4.2.3
Rewrite the expression.
Step 2.1.2.3.1.4.4.2.4
Divide by .
Step 2.1.2.3.1.5
Raise to the power of .
Step 2.1.2.3.1.6
Multiply by .
Step 2.1.2.3.2
Subtract from .
Step 2.1.3
Evaluate the limit of the denominator.
Step 2.1.3.1
Evaluate the limit.
Step 2.1.3.1.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 2.1.3.1.2
Move the exponent from outside the limit using the Limits Power Rule.
Step 2.1.3.1.3
Evaluate the limit of which is constant as approaches .
Step 2.1.3.2
Evaluate the limit of by plugging in for .
Step 2.1.3.3
Simplify the answer.
Step 2.1.3.3.1
Simplify each term.
Step 2.1.3.3.1.1
Apply the product rule to .
Step 2.1.3.3.1.2
Raise to the power of .
Step 2.1.3.3.1.3
Multiply by .
Step 2.1.3.3.1.4
Rewrite as .
Step 2.1.3.3.1.4.1
Use to rewrite as .
Step 2.1.3.3.1.4.2
Apply the power rule and multiply exponents, .
Step 2.1.3.3.1.4.3
Combine and .
Step 2.1.3.3.1.4.4
Cancel the common factor of .
Step 2.1.3.3.1.4.4.1
Cancel the common factor.
Step 2.1.3.3.1.4.4.2
Rewrite the expression.
Step 2.1.3.3.1.4.5
Evaluate the exponent.
Step 2.1.3.3.1.5
Multiply by .
Step 2.1.3.3.2
Subtract from .
Step 2.1.3.3.3
The expression contains a division by . The expression is undefined.
Undefined
Step 2.1.3.4
The expression contains a division by . The expression is undefined.
Undefined
Step 2.1.4
The expression contains a division by . The expression is undefined.
Undefined
Step 2.2
Since is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
Step 2.3
Find the derivative of the numerator and denominator.
Step 2.3.1
Differentiate the numerator and denominator.
Step 2.3.2
By the Sum Rule, the derivative of with respect to is .
Step 2.3.3
Differentiate using the Power Rule which states that is where .
Step 2.3.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.5
Add and .
Step 2.3.6
By the Sum Rule, the derivative of with respect to is .
Step 2.3.7
Differentiate using the Power Rule which states that is where .
Step 2.3.8
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.9
Add and .
Step 2.4
Reduce.
Step 2.4.1
Cancel the common factor of and .
Step 2.4.1.1
Factor out of .
Step 2.4.1.2
Cancel the common factors.
Step 2.4.1.2.1
Factor out of .
Step 2.4.1.2.2
Cancel the common factor.
Step 2.4.1.2.3
Rewrite the expression.
Step 2.4.2
Cancel the common factor of and .
Step 2.4.2.1
Factor out of .
Step 2.4.2.2
Cancel the common factors.
Step 2.4.2.2.1
Raise to the power of .
Step 2.4.2.2.2
Factor out of .
Step 2.4.2.2.3
Cancel the common factor.
Step 2.4.2.2.4
Rewrite the expression.
Step 2.4.2.2.5
Divide by .
Step 3
Step 3.1
Move the term outside of the limit because it is constant with respect to .
Step 3.2
Move the exponent from outside the limit using the Limits Power Rule.
Step 4
Evaluate the limit of by plugging in for .
Step 5
Step 5.1
Multiply by .
Step 5.2
Apply the product rule to .
Step 5.3
Raise to the power of .
Step 5.4
Multiply by .
Step 5.5
Rewrite as .
Step 5.5.1
Use to rewrite as .
Step 5.5.2
Apply the power rule and multiply exponents, .
Step 5.5.3
Combine and .
Step 5.5.4
Cancel the common factor of .
Step 5.5.4.1
Cancel the common factor.
Step 5.5.4.2
Rewrite the expression.
Step 5.5.5
Evaluate the exponent.
Step 5.6
Multiply by .