Calculus Examples

Evaluate the Limit limit as x approaches pi/3 of cot(-(2 square root of 3x)/pi+csc(x)-pi/4)
limxπ3cot(-23xπ+csc(x)-π4)limxπ3cot(23xπ+csc(x)π4)
Step 1
Move the limit inside the trig function because cotangent is continuous.
cot(limxπ3-23xπ+csc(x)-π4)cot(limxπ323xπ+csc(x)π4)
Step 2
Split the limit using the Sum of Limits Rule on the limit as xx approaches π3π3.
cot(-limxπ323xπ+limxπ3csc(x)-limxπ3π4)cot(limxπ323xπ+limxπ3csc(x)limxπ3π4)
Step 3
Move the term 23π23π outside of the limit because it is constant with respect to xx.
cot(-(23πlimxπ3x)+limxπ3csc(x)-limxπ3π4)cot((23πlimxπ3x)+limxπ3csc(x)limxπ3π4)
Step 4
Move the limit inside the trig function because cosecant is continuous.
cot(-(23πlimxπ3x)+csc(limxπ3x)-limxπ3π4)cot((23πlimxπ3x)+csc(limxπ3x)limxπ3π4)
Step 5
Evaluate the limit of π4π4 which is constant as xx approaches π3π3.
cot(-(23πlimxπ3x)+csc(limxπ3x)-π4)cot((23πlimxπ3x)+csc(limxπ3x)π4)
Step 6
Evaluate the limits by plugging in π3π3 for all occurrences of xx.
Tap for more steps...
Step 6.1
Evaluate the limit of xx by plugging in π3π3 for xx.
cot(-(23ππ3)+csc(limxπ3x)-π4)cot((23ππ3)+csc(limxπ3x)π4)
Step 6.2
Evaluate the limit of xx by plugging in π3π3 for xx.
cot(-(23ππ3)+csc(π3)-π4)cot((23ππ3)+csc(π3)π4)
cot(-(23ππ3)+csc(π3)-π4)cot((23ππ3)+csc(π3)π4)
Step 7
Simplify the answer.
Tap for more steps...
Step 7.1
Simplify each term.
Tap for more steps...
Step 7.1.1
Cancel the common factor of ππ.
Tap for more steps...
Step 7.1.1.1
Cancel the common factor.
cot(-(23ππ3)+csc(π3)-π4)
Step 7.1.1.2
Rewrite the expression.
cot(-(2313)+csc(π3)-π4)
cot(-(2313)+csc(π3)-π4)
Step 7.1.2
Combine 13 and 2.
cot(-(233)+csc(π3)-π4)
Step 7.1.3
Combine 23 and 3.
cot(-233+csc(π3)-π4)
Step 7.1.4
The exact value of csc(π3) is 23.
cot(-233+23-π4)
Step 7.1.5
Multiply 23 by 33.
cot(-233+2333-π4)
Step 7.1.6
Combine and simplify the denominator.
Tap for more steps...
Step 7.1.6.1
Multiply 23 by 33.
cot(-233+2333-π4)
Step 7.1.6.2
Raise 3 to the power of 1.
cot(-233+23313-π4)
Step 7.1.6.3
Raise 3 to the power of 1.
cot(-233+233131-π4)
Step 7.1.6.4
Use the power rule aman=am+n to combine exponents.
cot(-233+2331+1-π4)
Step 7.1.6.5
Add 1 and 1.
cot(-233+2332-π4)
Step 7.1.6.6
Rewrite 32 as 3.
Tap for more steps...
Step 7.1.6.6.1
Use nax=axn to rewrite 3 as 312.
cot(-233+23(312)2-π4)
Step 7.1.6.6.2
Apply the power rule and multiply exponents, (am)n=amn.
cot(-233+233122-π4)
Step 7.1.6.6.3
Combine 12 and 2.
cot(-233+23322-π4)
Step 7.1.6.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 7.1.6.6.4.1
Cancel the common factor.
cot(-233+23322-π4)
Step 7.1.6.6.4.2
Rewrite the expression.
cot(-233+2331-π4)
cot(-233+2331-π4)
Step 7.1.6.6.5
Evaluate the exponent.
cot(-233+233-π4)
cot(-233+233-π4)
cot(-233+233-π4)
cot(-233+233-π4)
Step 7.2
Combine the numerators over the common denominator.
cot(-23+233+-π4)
Step 7.3
Add -23 and 23.
cot(03+-π4)
Step 7.4
Simplify each term.
Tap for more steps...
Step 7.4.1
Divide 0 by 3.
cot(0+-π4)
Step 7.4.2
Move the negative in front of the fraction.
cot(0-π4)
cot(0-π4)
Step 7.5
Subtract π4 from 0.
cot(-π4)
Step 7.6
Add full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
cot(7π4)
Step 7.7
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cotangent is negative in the fourth quadrant.
-cot(π4)
Step 7.8
The exact value of cot(π4) is 1.
-11
Step 7.9
Multiply -1 by 1.
-1
-1
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]