Enter a problem...
Calculus Examples
Step 1
Differentiate both sides of the equation.
Step 2
The derivative of with respect to is .
Step 3
Step 3.1
Differentiate using the chain rule, which states that is where and .
Step 3.1.1
To apply the Chain Rule, set as .
Step 3.1.2
Differentiate using the Power Rule which states that is where .
Step 3.1.3
Replace all occurrences of with .
Step 3.2
Differentiate using the Quotient Rule which states that is where and .
Step 3.3
Differentiate.
Step 3.3.1
Differentiate using the Power Rule which states that is where .
Step 3.3.2
Move to the left of .
Step 3.3.3
By the Sum Rule, the derivative of with respect to is .
Step 3.3.4
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.5
Differentiate using the Power Rule which states that is where .
Step 3.3.6
Multiply by .
Step 3.3.7
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.8
Simplify the expression.
Step 3.3.8.1
Add and .
Step 3.3.8.2
Multiply by .
Step 3.4
Multiply by by adding the exponents.
Step 3.4.1
Move .
Step 3.4.2
Use the power rule to combine exponents.
Step 3.4.3
Add and .
Step 3.5
Combine and .
Step 3.6
Move to the left of .
Step 3.7
Simplify.
Step 3.7.1
Apply the product rule to .
Step 3.7.2
Apply the distributive property.
Step 3.7.3
Apply the distributive property.
Step 3.7.4
Apply the distributive property.
Step 3.7.5
Combine terms.
Step 3.7.5.1
Multiply by .
Step 3.7.5.2
Raise to the power of .
Step 3.7.5.3
Use the power rule to combine exponents.
Step 3.7.5.4
Add and .
Step 3.7.5.5
Multiply by .
Step 3.7.5.6
Multiply by .
Step 3.7.5.7
Multiply by .
Step 3.7.5.8
Multiply by .
Step 3.7.5.9
Subtract from .
Step 3.7.5.10
Multiply the exponents in .
Step 3.7.5.10.1
Apply the power rule and multiply exponents, .
Step 3.7.5.10.2
Multiply by .
Step 3.7.5.11
Multiply by .
Step 3.7.5.12
Multiply by by adding the exponents.
Step 3.7.5.12.1
Use the power rule to combine exponents.
Step 3.7.5.12.2
Add and .
Step 3.7.6
Reorder terms.
Step 3.7.7
Simplify the numerator.
Step 3.7.7.1
Factor out of .
Step 3.7.7.1.1
Factor out of .
Step 3.7.7.1.2
Factor out of .
Step 3.7.7.1.3
Factor out of .
Step 3.7.7.2
Combine exponents.
Step 3.7.7.2.1
Raise to the power of .
Step 3.7.7.2.2
Use the power rule to combine exponents.
Step 3.7.7.2.3
Add and .
Step 3.7.8
Simplify the denominator.
Step 3.7.8.1
Factor out of .
Step 3.7.8.1.1
Factor out of .
Step 3.7.8.1.2
Factor out of .
Step 3.7.8.1.3
Factor out of .
Step 3.7.8.2
Rewrite as .
Step 3.7.8.3
Since both terms are perfect cubes, factor using the difference of cubes formula, where and .
Step 3.7.8.4
Simplify.
Step 3.7.8.4.1
Multiply by .
Step 3.7.8.4.2
One to any power is one.
Step 3.7.8.5
Apply the product rule to .
Step 3.7.8.6
Apply the distributive property.
Step 3.7.8.7
Multiply by .
Step 3.7.8.8
Use the Binomial Theorem.
Step 3.7.8.9
Simplify each term.
Step 3.7.8.9.1
Apply the product rule to .
Step 3.7.8.9.2
Raise to the power of .
Step 3.7.8.9.3
Apply the product rule to .
Step 3.7.8.9.4
Multiply by by adding the exponents.
Step 3.7.8.9.4.1
Move .
Step 3.7.8.9.4.2
Multiply by .
Step 3.7.8.9.4.2.1
Raise to the power of .
Step 3.7.8.9.4.2.2
Use the power rule to combine exponents.
Step 3.7.8.9.4.3
Add and .
Step 3.7.8.9.5
Raise to the power of .
Step 3.7.8.9.6
Multiply by .
Step 3.7.8.9.7
Apply the product rule to .
Step 3.7.8.9.8
Raise to the power of .
Step 3.7.8.9.9
Multiply by .
Step 3.7.8.9.10
Raise to the power of .
Step 3.7.8.9.11
Multiply by .
Step 3.7.8.9.12
Apply the product rule to .
Step 3.7.8.9.13
Raise to the power of .
Step 3.7.8.9.14
Multiply by .
Step 3.7.8.9.15
Raise to the power of .
Step 3.7.8.9.16
Multiply by .
Step 3.7.8.9.17
Apply the product rule to .
Step 3.7.8.9.18
Raise to the power of .
Step 3.7.8.9.19
Multiply by .
Step 3.7.8.9.20
Raise to the power of .
Step 3.7.8.9.21
Multiply by .
Step 3.7.8.9.22
Multiply by .
Step 3.7.8.9.23
Raise to the power of .
Step 3.7.8.9.24
Multiply by .
Step 3.7.8.9.25
Raise to the power of .
Step 3.7.8.10
Factor out of .
Step 3.7.8.10.1
Factor out of .
Step 3.7.8.10.2
Factor out of .
Step 3.7.8.10.3
Factor out of .
Step 3.7.8.10.4
Factor out of .
Step 3.7.8.10.5
Factor out of .
Step 3.7.8.10.6
Factor out of .
Step 3.7.8.10.7
Factor out of .
Step 3.7.8.10.8
Factor out of .
Step 3.7.8.10.9
Factor out of .
Step 3.7.8.10.10
Factor out of .
Step 3.7.8.10.11
Factor out of .
Step 3.7.8.10.12
Factor out of .
Step 3.7.8.10.13
Factor out of .
Step 3.7.8.11
Factor using the binomial theorem.
Step 3.7.9
Cancel the common factor of and .
Step 3.7.9.1
Factor out of .
Step 3.7.9.2
Cancel the common factors.
Step 3.7.9.2.1
Factor out of .
Step 3.7.9.2.2
Cancel the common factor.
Step 3.7.9.2.3
Rewrite the expression.
Step 3.7.10
Factor out of .
Step 3.7.11
Rewrite as .
Step 3.7.12
Factor out of .
Step 3.7.13
Rewrite as .
Step 3.7.14
Move the negative in front of the fraction.
Step 3.7.15
Reorder factors in .
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Replace with .